Difference between revisions of "1989 AJHSME Problems/Problem 1"

(Solution)
Line 12: Line 12:
 
&= 250 \Longrightarrow \boxed{\text{E}}
 
&= 250 \Longrightarrow \boxed{\text{E}}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 +
 +
==Solution 2==
 +
Or, we can just combine the first, second, third, fourth, and last terms in each parentheses. This gives us:
 +
<cmath>\begin{align*}
 +
(1+9)+(11+19)+(21+29)+(31+39)+(41+49),</cmath>
 +
which gives us
 +
<math></math>\begin{align*}
 +
<math>10+30+50+70+90 &= \boxed{250}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 12:20, 28 December 2021

Problem

$(1+11+21+31+41)+(9+19+29+39+49)=$

$\text{(A)}\ 150 \qquad \text{(B)}\ 199 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 249 \qquad \text{(E)}\ 250$

Solution

We make use of the associative and commutative properties of addition to rearrange the sum as \begin{align*} (1+49)+(11+39)+(21+29)+(31+19)+(41+9) &= 50+50+50+50+50 \\ &= 250 \Longrightarrow \boxed{\text{E}} \end{align*}

Solution 2

Or, we can just combine the first, second, third, fourth, and last terms in each parentheses. This gives us:

\begin{align*}
(1+9)+(11+19)+(21+29)+(31+39)+(41+49), (Error compiling LaTeX. Unknown error_msg)

which gives us $$ (Error compiling LaTeX. Unknown error_msg)\begin{align*} $10+30+50+70+90 &= \boxed{250}.$ (Error compiling LaTeX. Unknown error_msg)

See Also

1989 AJHSME (ProblemsAnswer KeyResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png