Difference between revisions of "2011 AMC 12A Problems/Problem 25"
Armalite46 (talk | contribs) m (→Solution) |
Armalite46 (talk | contribs) (→Solution) |
||
Line 13: | Line 13: | ||
Let <math>\angle CAB=A</math>, <math>\angle ABC=B</math>, <math>\angle BCA=C</math> for convenience. | Let <math>\angle CAB=A</math>, <math>\angle ABC=B</math>, <math>\angle BCA=C</math> for convenience. | ||
− | It's well-known that <math>\angle BOC=2A</math>, <math>\angle BIC=90+\frac{A}{2}</math>, and <math>\angle BHC=180-A</math> (indeed, all are verifiable by angle chasing). Then, as <math>A=60</math>, it follows that <math>\angle BOC=\angle BIC=\angle BHC=120</math> and consequently pentagon <math>BCOIH</math> is cyclic. Observe that <math>BC=1</math> is fixed, whence the circumcircle of cyclic pentagon <math>BCOIH</math> is also fixed. Similarly, as <math>OB=OC</math>, it follows that <math>O</math> | + | It's well-known that <math>\angle BOC=2A</math>, <math>\angle BIC=90+\frac{A}{2}</math>, and <math>\angle BHC=180-A</math> (indeed, all are verifiable by angle chasing). Then, as <math>A=60</math>, it follows that <math>\angle BOC=\angle BIC=\angle BHC=120</math> and consequently pentagon <math>BCOIH</math> is cyclic. Observe that <math>BC=1</math> is fixed, whence the circumcircle of cyclic pentagon <math>BCOIH</math> is also fixed. Similarly, as <math>OB=OC</math>(both are radii), it follows that <math>O</math> and also <math>[BCO]</math> is fixed. Since <math>[BCOIH]=[BCO]+[BOIH]</math> is maximal, it suffices to maximize <math>[BOIH]</math>. |
− | Verify that <math>\angle IBC=\frac{B}{2}</math>, <math>\angle HBC=90-C</math> by angle chasing; it follows that <math>\angle IBH=\angle HBC-\angle IBC=90-C-\frac{B}{2}=\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}</math> since <math>A+B+C=180\implies\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90</math> by Triangle Angle Sum. Similarly, <math>\angle OBC=90-A=30</math>(isosceles base angles are equal), whence <math>\angle IBO=\angle IBC-\angle OBC=\frac{B}{2}-30=60-\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}</math> and consequently <math>IH=IO</math> by Inscribed Angles. | + | Verify that <math>\angle IBC=\frac{B}{2}</math>, <math>\angle HBC=90-C</math> by angle chasing; it follows that <math>\angle IBH=\angle HBC-\angle IBC=90-C-\frac{B}{2}=\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}</math> since <math>A+B+C=180\implies\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90</math> by Triangle Angle Sum. Similarly, <math>\angle OBC=90-A=30</math> (isosceles base angles are equal), whence <math>\angle IBO=\angle IBC-\angle OBC=\frac{B}{2}-30=60-\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}</math> and consequently <math>IH=IO</math> by Inscribed Angles. |
− | There are several ways to proceed. Letting <math>O'</math> and <math>R</math> be the circumcenter and circumradius, respectively, of cyclic pentagon <math>BCOIH</math>, the most straightforward is to write <math>[BOIH]=[OO'I]+[IO'H]+[HO'B]-[BO'O]</math>, whence <cmath>[BOIH]=\frac{1}{2}R^2(\sin(60-C)+\sin(60-C)+\sin(2C-60)-\sin(60))</cmath> and, using the fact that <math>R</math> is fixed, maximize <math>2\sin(60-C)+\sin(2C-60)</math> with Jensen's Inequality. A much more elegant way is shown below. | + | There are several ways to proceed. |
+ | |||
+ | Letting <math>O'</math> and <math>R</math> be the circumcenter and circumradius, respectively, of cyclic pentagon <math>BCOIH</math>, the most straightforward is to write <math>[BOIH]=[OO'I]+[IO'H]+[HO'B]-[BO'O]</math>, whence <cmath>[BOIH]=\frac{1}{2}R^2(\sin(60-C)+\sin(60-C)+\sin(2C-60)-\sin(60))</cmath> and, using the fact that <math>R</math> is fixed, maximize <math>2\sin(60-C)+\sin(2C-60)</math> with Jensen's Inequality. | ||
+ | |||
+ | A much more elegant way is shown below. | ||
'''Lemma:''' <math>[BOIH]</math> is maximized only if <math>HB=HI</math>. | '''Lemma:''' <math>[BOIH]</math> is maximized only if <math>HB=HI</math>. | ||
Line 23: | Line 27: | ||
'''Proof:''' Suppose for the sake of contradiction that <math>[BOIH]</math> is maximized when <math>HB\neq HI</math>. Let <math>H'</math> be the midpoint of minor arc <math>BI</math> be and <math>I'</math> the midpoint of minor arc <math>H'O</math>. Then <math>[BOIH']=[IBO]+[IBH']>[IBO]+[IBH]=[BOIH]</math> since the altitude from <math>H'</math> to <math>BI</math> is greater than that from <math>H</math> to <math>BI</math>; similarly <math>[BH'I'O]>[BOIH']>[BOIH]</math>. Taking <math>H'</math>, <math>I'</math> to be the new orthocenter, incenter, respectively, this contradicts the maximality of <math>[BOIH]</math>, whence the claim follows. <math>\blacksquare</math> | '''Proof:''' Suppose for the sake of contradiction that <math>[BOIH]</math> is maximized when <math>HB\neq HI</math>. Let <math>H'</math> be the midpoint of minor arc <math>BI</math> be and <math>I'</math> the midpoint of minor arc <math>H'O</math>. Then <math>[BOIH']=[IBO]+[IBH']>[IBO]+[IBH]=[BOIH]</math> since the altitude from <math>H'</math> to <math>BI</math> is greater than that from <math>H</math> to <math>BI</math>; similarly <math>[BH'I'O]>[BOIH']>[BOIH]</math>. Taking <math>H'</math>, <math>I'</math> to be the new orthocenter, incenter, respectively, this contradicts the maximality of <math>[BOIH]</math>, whence the claim follows. <math>\blacksquare</math> | ||
− | + | We assume there is a maximum <math>[BOIH]</math> since the problem says so. Then <math>HB=HI</math> by our lemma and <math>IH=IO</math> from above, it follows that <cmath>\angle ABC=2\angle IBC=2(\angle OBC+\angle OBI)=2(30+\frac{1}{3}\angle OCB)=80\implies\boxed{(D)}</cmath> | |
-Solution by '''thecmd999''' | -Solution by '''thecmd999''' |
Revision as of 15:55, 28 September 2013
Problem
Triangle has , , , and . Let , , and be the orthocenter, incenter, and circumcenter of , respectively. Assume that the area of pentagon is the maximum possible. What is ?
Solution
Let , , for convenience.
It's well-known that , , and (indeed, all are verifiable by angle chasing). Then, as , it follows that and consequently pentagon is cyclic. Observe that is fixed, whence the circumcircle of cyclic pentagon is also fixed. Similarly, as (both are radii), it follows that and also is fixed. Since is maximal, it suffices to maximize .
Verify that , by angle chasing; it follows that since by Triangle Angle Sum. Similarly, (isosceles base angles are equal), whence and consequently by Inscribed Angles.
There are several ways to proceed.
Letting and be the circumcenter and circumradius, respectively, of cyclic pentagon , the most straightforward is to write , whence and, using the fact that is fixed, maximize with Jensen's Inequality.
A much more elegant way is shown below.
Lemma: is maximized only if .
Proof: Suppose for the sake of contradiction that is maximized when . Let be the midpoint of minor arc be and the midpoint of minor arc . Then since the altitude from to is greater than that from to ; similarly . Taking , to be the new orthocenter, incenter, respectively, this contradicts the maximality of , whence the claim follows.
We assume there is a maximum since the problem says so. Then by our lemma and from above, it follows that
-Solution by thecmd999
See also
2011 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.