Difference between revisions of "2014 AMC 10B Problems/Problem 23"
(→Solution) |
(→Solution) |
||
Line 68: | Line 68: | ||
</asy> | </asy> | ||
(diagram by DivideBy0?) | (diagram by DivideBy0?) | ||
+ | |||
then using the Pythagorean theorem we have: | then using the Pythagorean theorem we have: | ||
<math>(r+1)^2=(2s)^2+(r-1)^2</math> | <math>(r+1)^2=(2s)^2+(r-1)^2</math> |
Revision as of 21:05, 20 February 2014
Problem
A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone?
(Diagram edited from copeland's diagram)
Solution
First, we draw the vertical cross-section passing through the middle of the frustum. let the top base equal 2 and the bottom base to be equal to 2r (diagram by DivideBy0?)
then using the Pythagorean theorem we have: which is equivalent to: subtracting from both sides solving for s we get: next we can find the area of the frustum and of the sphere and we know so we can solve for using we get: using we get so we have: dividing by we get which is equivalent to so
See Also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.