Difference between revisions of "1992 AHSME Problems/Problem 16"
(Created page with "== Problem == If <cmath>\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}</cmath> for three positive numbers <math>x,y</math> and <math>z</math>, all different, then <math>\frac{x}{y}=</m...") |
(Added a solution with explanation) |
||
Line 12: | Line 12: | ||
== Solution == | == Solution == | ||
− | <math>\fbox{E}</math> | + | <math>\fbox{E}</math> We have <math>\frac{x+y}{z} = \frac{x}{y} \implies xy+y^2=xz</math> and <math>\frac{y}{x-z} = \frac{x}{y} \implies y^2=x^2-xz \implies x^2-y^2=xz</math>. Equating the two expressions for <math>xz</math> gives <math>xy+y^2=x^2-y^2 \implies x^2-xy-2y^2=0 \implies (x+y)(x-2y)=0</math>, so as <math>x+y</math> cannot be <math>0</math> for positive <math>x</math> and <math>y</math>, we must have <math>x-2y=0 \implies x=2y \implies \frac{x}{y}=2</math>. |
== See also == | == See also == |
Revision as of 01:52, 20 February 2018
Problem
If for three positive numbers and , all different, then
Solution
We have and . Equating the two expressions for gives , so as cannot be for positive and , we must have .
See also
1992 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.