Difference between revisions of "2015 AIME II Problems/Problem 1"
(Created page with "==Problem== Let <math>N</math> be the least positive integer that is both <math>22</math> percent less than one integer and <math>16</math> percent greater than another integ...") |
Chowchow0706 (talk | contribs) |
||
Line 3: | Line 3: | ||
Let <math>N</math> be the least positive integer that is both <math>22</math> percent less than one integer and <math>16</math> percent greater than another integer. Find the remainder when <math>N</math> is divided by <math>1000</math>. | Let <math>N</math> be the least positive integer that is both <math>22</math> percent less than one integer and <math>16</math> percent greater than another integer. Find the remainder when <math>N</math> is divided by <math>1000</math>. | ||
− | ==Solution== | + | ==Solution 1== |
If <math>N</math> is <math>22</math> percent less than one integer <math>k</math>, then <math>N=\frac{78}{100}k=\frac{39}{50}k</math>. In addition, <math>N</math> is <math>16</math> percent greater than another integer <math>m</math>, so <math>N=\frac{116}{100}m=\frac{29}{25}m</math>. Therefore, <math>k</math> is divisible by 50 and <math>m</math> is divisible by 25. Setting these two equal, we have <math>\frac{39}{50}k=\frac{29}{25}m</math>. Multiplying by <math>50</math> on both sides, we get <math>39k=58m</math>. | If <math>N</math> is <math>22</math> percent less than one integer <math>k</math>, then <math>N=\frac{78}{100}k=\frac{39}{50}k</math>. In addition, <math>N</math> is <math>16</math> percent greater than another integer <math>m</math>, so <math>N=\frac{116}{100}m=\frac{29}{25}m</math>. Therefore, <math>k</math> is divisible by 50 and <math>m</math> is divisible by 25. Setting these two equal, we have <math>\frac{39}{50}k=\frac{29}{25}m</math>. Multiplying by <math>50</math> on both sides, we get <math>39k=58m</math>. | ||
The smallest integers <math>k</math> and <math>m</math> that satisfy this are <math>k=1450</math> and <math>m=975</math>, so <math>N=1131</math>. The answer is <math>\boxed{131}</math>. | The smallest integers <math>k</math> and <math>m</math> that satisfy this are <math>k=1450</math> and <math>m=975</math>, so <math>N=1131</math>. The answer is <math>\boxed{131}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Continuing from Solution 1, we have <math>N=\frac{39}{50}k</math> and <math>N=\frac{29}{25}m</math>. It follows that <math>k=\frac{50}{39}N</math> and <math>m=\frac{25}{29}N</math>. Both <math>m</math> and <math>k</math> have to be integers, so, in order for that to be true, <math>N</math> has to cancel the denominator of both <math>\frac{50}{39}</math> and <math>\frac{25}{29}</math>. In other words, <math>N</math> is a multiple of both <math>29</math> and <math>39</math>. That makes <math>N=\operatorname{lcm}(29,39)=29\cdot39=1131</math>. The answer is <math>\boxed{131}</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2015|n=II|before=First Problem|num-a=2}} | {{AIME box|year=2015|n=II|before=First Problem|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 03:36, 12 May 2021
Contents
Problem
Let be the least positive integer that is both percent less than one integer and percent greater than another integer. Find the remainder when is divided by .
Solution 1
If is percent less than one integer , then . In addition, is percent greater than another integer , so . Therefore, is divisible by 50 and is divisible by 25. Setting these two equal, we have . Multiplying by on both sides, we get .
The smallest integers and that satisfy this are and , so . The answer is .
Solution 2
Continuing from Solution 1, we have and . It follows that and . Both and have to be integers, so, in order for that to be true, has to cancel the denominator of both and . In other words, is a multiple of both and . That makes . The answer is .
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.