Difference between revisions of "2005 AMC 12A Problems/Problem 24"

m (See also)
(Solution)
Line 6: Line 6:
  
 
== Solution ==
 
== Solution ==
Since <math>R(x)</math> has degree three, then <math>P(x)\cdot R(x)</math> has degree six. Thus, <math>P(Q(x))</math> has degree six, so <math>Q(x)</math> must have degree two, since <math>P(x)</math> has degree three.
+
We can write the problem as
 +
<div style="text-align:center;">
 +
<math>P(Q(x))=(Q(x)-1)(Q(x)-2)(Q(x)-3)=P(x)\cdot R(x)=(x-1)(x-2)(x-3)\cdot R(x)</math>.
 +
</div>
 +
 
 +
 
 +
Since <math>\deg P(x) = 3</math> and <math>\deg R(x) = 3</math>, <math>\deg P(x)\cdot R(x) = 6</math>. Thus, <math>\deg P(Q(x)) = 6</math>, so <math>\deg Q(x) = 2</math>.
 
<div style="text-align:center;">
 
<div style="text-align:center;">
 
<math>
 
<math>
Line 19: Line 25:
  
  
However, we have included <math>Q(x)</math> which are not quadratics. Namely,
+
However, we have included <math>Q(x)</math> which are not quadratics: lines. Namely,
 
<div style="text-align:center;">
 
<div style="text-align:center;">
 
<math>
 
<math>
Line 33: Line 39:
 
</math>
 
</math>
 
</div>
 
</div>
Clearly, we could not have included any other constant functions. For any linear function, we have <math>2\cdot Q(2) = Q(1) + Q(3)</math> because <math>2(2)=1+3</math>. So we have not included any other linear functions. Therefore, the desired answer is <math>27 - 5 = \boxed{\textbf{(B) }22}</math>.
+
Clearly, we could not have included any other constant functions. For any linear function, we have <math>2\cdot Q(2) = Q(1) + Q(3)</math> because <math>Q(2)</math> is y-value of the midpoint of <math>(1, Q(1))</math> and <math>(3, Q(3))</math>. So we have not included any other linear functions. Therefore, the desired answer is <math>27 - 5 = \boxed{\textbf{(B) }22}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 21:57, 26 November 2018

Problem

Let $P(x)=(x-1)(x-2)(x-3)$. For how many polynomials $Q(x)$ does there exist a polynomial $R(x)$ of degree 3 such that $P(Q(x))=P(x)* R(x)$?


$\mathrm {(A) } 19 \qquad \mathrm {(B) } 22 \qquad \mathrm {(C) } 24 \qquad \mathrm {(D) } 27 \qquad \mathrm {(E) } 32$

Solution

We can write the problem as

$P(Q(x))=(Q(x)-1)(Q(x)-2)(Q(x)-3)=P(x)\cdot R(x)=(x-1)(x-2)(x-3)\cdot R(x)$.


Since $\deg P(x) = 3$ and $\deg R(x) = 3$, $\deg P(x)\cdot R(x) = 6$. Thus, $\deg P(Q(x)) = 6$, so $\deg Q(x) = 2$.

$P(Q(1))=(Q(1)-1)(Q(1)-2)(Q(1)-3)=P(1)\cdot R(1)=0,$
$P(Q(2))=(Q(2)-1)(Q(2)-2)(Q(2)-3)=P(2)\cdot R(2)=0,$
$P(Q(3))=(Q(3)-1)(Q(3)-2)(Q(3)-3)=P(3)\cdot R(3)=0.$

Hence, we conclude $Q(1)$, $Q(2)$, and $Q(3)$ must each be $1$, $2$, or $3$. Since a quadratic is uniquely determined by three points, there can be $3*3*3 = 27$ different quadratics $Q(x)$ after each of the values of $Q(1)$, $Q(2)$, and $Q(3)$ are chosen.


However, we have included $Q(x)$ which are not quadratics: lines. Namely,

$Q(1)=Q(2)=Q(3)=1 \Rightarrow Q(x)=1,$
$Q(1)=Q(2)=Q(3)=2 \Rightarrow Q(x)=2,$
$Q(1)=Q(2)=Q(3)=3 \Rightarrow Q(x)=3,$
$Q(1)=1, Q(2)=2, Q(3)=3 \Rightarrow Q(x)=x,$
$Q(1)=3, Q(2)=2, Q(3)=1 \Rightarrow Q(x)=4-x.$

Clearly, we could not have included any other constant functions. For any linear function, we have $2\cdot Q(2) = Q(1) + Q(3)$ because $Q(2)$ is y-value of the midpoint of $(1, Q(1))$ and $(3, Q(3))$. So we have not included any other linear functions. Therefore, the desired answer is $27 - 5 = \boxed{\textbf{(B) }22}$.

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png