Difference between revisions of "2001 USAMO Problems/Problem 2"
Anandiyer12 (talk | contribs) (→Problem) |
Anandiyer12 (talk | contribs) (→Problem) |
||
Line 2: | Line 2: | ||
Let <math>ABC</math> be a [[triangle]] and let <math>\omega</math> be its [[incircle]]. Denote by <math>D_1</math> and <math>E_1</math> the points where <math>\omega</math> is tangent to sides <math>BC</math> and <math>AC</math>, respectively. Denote by <math>D_2</math> and <math>E_2</math> the points on sides <math>BC</math> and <math>AC</math>, respectively, such that <math>CD_2 = BD_1</math> and <math>CE_2 = AE_1</math>, and denote by <math>P</math> the point of intersection of segments <math>AD_2</math> and <math>BE_2</math>. Circle <math>\omega</math> intersects segment <math>AD_2</math> at two points, the closer of which to the vertex <math>A</math> is denoted by <math>Q</math>. Prove that <math>AQ = D_2P</math>. | Let <math>ABC</math> be a [[triangle]] and let <math>\omega</math> be its [[incircle]]. Denote by <math>D_1</math> and <math>E_1</math> the points where <math>\omega</math> is tangent to sides <math>BC</math> and <math>AC</math>, respectively. Denote by <math>D_2</math> and <math>E_2</math> the points on sides <math>BC</math> and <math>AC</math>, respectively, such that <math>CD_2 = BD_1</math> and <math>CE_2 = AE_1</math>, and denote by <math>P</math> the point of intersection of segments <math>AD_2</math> and <math>BE_2</math>. Circle <math>\omega</math> intersects segment <math>AD_2</math> at two points, the closer of which to the vertex <math>A</math> is denoted by <math>Q</math>. Prove that <math>AQ = D_2P</math>. | ||
− | + | ==Solution== | |
− | + | ==Solution 1== | |
− | |||
− | |||
− | Solution 1 | ||
It is well known that the excircle opposite <math>A</math> is tangent to <math>\overline{BC}</math> at the point <math>D_2</math>. (Proof: let the points of tangency of the excircle with the lines <math>BC, AB, AC</math> be <math>D_3, F,G</math> respectively. Then <math>AB+BD_3=AB + BF=AF = AG = AC + AG=AC + CD_3</math>. It follows that <math>2CD_3 = AB + BC - AC</math>, and <math>CD_3 = s-b = BD_1 = CD_2</math>, so <math>D_3 \equiv D_2</math>.) | It is well known that the excircle opposite <math>A</math> is tangent to <math>\overline{BC}</math> at the point <math>D_2</math>. (Proof: let the points of tangency of the excircle with the lines <math>BC, AB, AC</math> be <math>D_3, F,G</math> respectively. Then <math>AB+BD_3=AB + BF=AF = AG = AC + AG=AC + CD_3</math>. It follows that <math>2CD_3 = AB + BC - AC</math>, and <math>CD_3 = s-b = BD_1 = CD_2</math>, so <math>D_3 \equiv D_2</math>.) | ||
Line 15: | Line 12: | ||
By Menelaus' Theorem on <math>\triangle ACD_2</math> with segment <math>\overline{BE_2}</math>, it follows that <math>\frac{CE_2}{E_2A} \cdot \frac{AP}{PD_2} \cdot \frac{BD_2}{BC} = 1 \Longrightarrow \frac{AP}{PD_2} = \frac{(c - (s-a)) \cdot a}{(a-(s-c)) \cdot AE_1} = \frac{a}{s-a}</math>. It easily follows that <math>AQ = D_2P</math>. <math>\blacksquare</math> | By Menelaus' Theorem on <math>\triangle ACD_2</math> with segment <math>\overline{BE_2}</math>, it follows that <math>\frac{CE_2}{E_2A} \cdot \frac{AP}{PD_2} \cdot \frac{BD_2}{BC} = 1 \Longrightarrow \frac{AP}{PD_2} = \frac{(c - (s-a)) \cdot a}{(a-(s-c)) \cdot AE_1} = \frac{a}{s-a}</math>. It easily follows that <math>AQ = D_2P</math>. <math>\blacksquare</math> | ||
− | Solution 2 | + | ==Solution 2== |
The key observation is the following lemma. | The key observation is the following lemma. |
Revision as of 20:20, 23 September 2015
Contents
[hide]Problem
Let be a triangle and let
be its incircle. Denote by
and
the points where
is tangent to sides
and
, respectively. Denote by
and
the points on sides
and
, respectively, such that
and
, and denote by
the point of intersection of segments
and
. Circle
intersects segment
at two points, the closer of which to the vertex
is denoted by
. Prove that
.
Solution
Solution 1
It is well known that the excircle opposite is tangent to
at the point
. (Proof: let the points of tangency of the excircle with the lines
be
respectively. Then
. It follows that
, and
, so
.)
Now consider the homothety that carries the incircle of to its excircle. The homothety also carries
to
(since
are collinear), and carries the tangency points
to
. It follows that
.
[asy] pathpen = linewidth(0.7); size(300); pen d = linetype("4 4") + linewidth(0.6); pair B=(0,0), C=(10,0), A=7*expi(1),O=D(incenter(A,B,C)),D1 = D(MP("D_1",foot(O,B,C))),E1 = D(MP("E_1",foot(O,A,C),NE)),E2 = D(MP("E_2",C+A-E1,NE)); /* arbitrary points */ /* ugly construction for OA */ pair Ca = 2C-A, Cb = bisectorpoint(Ca,C,B), OA = IP(A--A+10*(O-A),C--C+50*(Cb-C)), D2 = D(MP("D_2",foot(OA,B,C))), Fa=2B-A, Ga=2C-A, F=MP("F",D(foot(OA,B,Fa)),NW), G=MP("G",D(foot(OA,C,Ga)),NE); D(OA); D(MP("A",A,N)--MP("B",B,NW)--MP("C",C,NE)--cycle); D(incircle(A,B,C)); D(CP(OA,D2),d); D(B--Fa,linewidth(0.6)); D(C--Ga,linewidth(0.6)); D(MP("P",IP(D(A--D2),D(B--E2)),NNE)); D(MP("Q",IP(incircle(A,B,C),A--D2),SW)); clip((-20,-10)--(-20,20)--(20,20)--(20,-10)--cycle); [/asy]
By Menelaus' Theorem on with segment
, it follows that
. It easily follows that
.
Solution 2
The key observation is the following lemma.
Lemma: Segment is a diameter of circle
.
2001usamo2-1.png
Proof: Let be the center of circle
, i.e.,
is the incenter of triangle
. Extend segment
through
to intersect circle
again at
, and extend segment
through
to intersect segment
at
. We show that
, which in turn implies that
, that is,
is a diameter of
.
Let be the line tangent to circle
at
, and let
intersect the segments
and
at
and
, respectively. Then
is an excircle of triangle
. Let
denote the dilation with its center at
and ratio
. Since
and
,
. Hence
. Thus
,
, and
. It also follows that an excircle
of triangle
is tangent to the side
at
.
It is well known that We compute
. Let
and
denote the points of tangency of circle
with rays
and
, respectively. Then by equal tangents,
,
, and
. Hence
It follows that
Combining these two equations yields
. Thus
that is,
, as desired.
Now we prove our main result. Let and
be the respective midpoints of segments
and
. Then
is also the midpoint of segment
, from which it follows that
is the midline of triangle
. Hence
and
. Similarly, we can prove that
.
2001usamo2-2.png
Let be the centroid of triangle
. Thus segments
and
intersect at
. Define transformation
as the dilation with its center at
and ratio
. Then
and
. Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since
and
,
maps lines
and
to lines
and
, respectively. It also follows that
and
or
This yields
as desired.
Note: We used directed lengths in our calculations to avoid possible complications caused by the different shapes of triangle .
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.