Difference between revisions of "1963 AHSME Problems/Problem 40"
(Created page with "Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 -...") |
Rockmanex3 (talk | contribs) (Visual upgrade!) |
||
Line 1: | Line 1: | ||
+ | == Problem 40== | ||
+ | |||
+ | If <math>x</math> is a number satisfying the equation <math>\sqrt[3]{x+9}-\sqrt[3]{x-9}=3</math>, then <math>x^2</math> is between: | ||
+ | |||
+ | <math>\textbf{(A)}\ 55\text{ and }65\qquad | ||
+ | \textbf{(B)}\ 65\text{ and }75\qquad | ||
+ | \textbf{(C)}\ 75\text{ and }85\qquad | ||
+ | \textbf{(D)}\ 85\text{ and }95\qquad | ||
+ | \textbf{(E)}\ 95\text{ and }105 </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 - b^3 = 18</math>. The left-hand side factors as | Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 - b^3 = 18</math>. The left-hand side factors as | ||
<cmath>(a - b)(a^2 + ab + b^2) = 18.</cmath> | <cmath>(a - b)(a^2 + ab + b^2) = 18.</cmath> | ||
Line 4: | Line 16: | ||
However, from the given equation <math>\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3</math>, we get <math>a - b = 3</math>. Then <math>3(a^2 + ab + b^2) = 18</math>, so <math>a^2 + ab + b^2 = 18/3 = 6</math>. | However, from the given equation <math>\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3</math>, we get <math>a - b = 3</math>. Then <math>3(a^2 + ab + b^2) = 18</math>, so <math>a^2 + ab + b^2 = 18/3 = 6</math>. | ||
− | Squaring the equation <math>a - b = 3</math>, we get <math>a^2 - 2ab + b^2 = 9</math>. Subtracting this equation from the equation <math>a^2 + ab + b^2 = 6</math>, we get <math>3ab = -3</math>, so <math>ab = -1</math>. But <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>, so <math>ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}</math>, so <math>\sqrt[3]{x^2 - 81} = -1</math>. Cubing both sides, we get <math>x^2 - 81 = -1</math>, so <math>x^2 = | + | Squaring the equation <math>a - b = 3</math>, we get <math>a^2 - 2ab + b^2 = 9</math>. Subtracting this equation from the equation <math>a^2 + ab + b^2 = 6</math>, we get <math>3ab = -3</math>, so <math>ab = -1</math>. But <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>, so <math>ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}</math>, so <math>\sqrt[3]{x^2 - 81} = -1</math>. Cubing both sides, we get <math>x^2 - 81 = -1</math>, so <math>x^2 = 80</math>. The answer is <math>\boxed{\textbf{(C)}}</math>. |
+ | |||
+ | ==See Also== | ||
+ | {{AHSME 40p box|year=1963|num-b=39|after=Last Problem}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 01:59, 7 June 2018
Problem 40
If is a number satisfying the equation , then is between:
Solution
Let and . Cubing these equations, we get and , so . The left-hand side factors as
However, from the given equation , we get . Then , so .
Squaring the equation , we get . Subtracting this equation from the equation , we get , so . But and , so , so . Cubing both sides, we get , so . The answer is .
See Also
1963 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 39 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.