Difference between revisions of "2013 AIME I Problems/Problem 15"
(→Solution) |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
From condition (d), we have <math>(A,B,C)=(B-D,B,B+D)</math> and <math>(b,a,c)=(a-d,a,a+d)</math>. Condition <math>\text{(c)}</math> states that <math>p\mid B-D-a</math>, <math>p|B-a+d</math>, and <math>p\mid B+D-a-d</math>. We subtract the first two to get <math>p\mid-d-D</math>, and we do the same for the last two to get <math>p\mid 2d-D</math>. We subtract these two to get <math>p\mid 3d</math>. So <math>p\mid 3</math> or <math>p\mid d</math>. The second case is clearly impossible, because that would make <math>c=a+d>p</math>, violating condition <math>\text{(b)}</math>. So we have <math>p\mid 3</math>, meaning <math>p=3</math>. Condition <math>\text{(b)}</math> implies that <math>(b,a,c)=(0,1,2)</math> or <math>(a,b,c)\in (1,0,2)\rightarrow (-2,0,2)\text{ }(D\equiv 2\text{ mod 3})</math>. Now we return to condition <math>\text{(c)}</math>, which now implies that <math>(A,B,C)\equiv(-2,0,2)\pmod{3}</math>. Now, we set <math>B=3k</math> for increasing positive integer values of <math>k</math>. <math>B=0</math> yields no solutions. <math>B=3</math> gives <math>(A,B,C)=(1,3,5)</math>, giving us <math>1</math> solution. If <math>B=6</math>, we get <math>2</math> solutions, <math>(4,6,8)</math> and <math>(1,6,11)</math>. Proceeding in the manner, we see that if <math>B=48</math>, we get 16 solutions. However, <math>B=51</math> still gives <math>16</math> solutions because <math>C_\text{max}=2B-1=101>100</math>. Likewise, <math>B=54</math> gives <math>15</math> solutions. This continues until <math>B=96</math> gives one solution. <math>B=99</math> gives no solution. Thus, <math>N=1+2+\cdots+16+16+15+\cdots+1=2\cdot\frac{16(17)}{2}=16\cdot 17=\boxed{272}</math>. | From condition (d), we have <math>(A,B,C)=(B-D,B,B+D)</math> and <math>(b,a,c)=(a-d,a,a+d)</math>. Condition <math>\text{(c)}</math> states that <math>p\mid B-D-a</math>, <math>p|B-a+d</math>, and <math>p\mid B+D-a-d</math>. We subtract the first two to get <math>p\mid-d-D</math>, and we do the same for the last two to get <math>p\mid 2d-D</math>. We subtract these two to get <math>p\mid 3d</math>. So <math>p\mid 3</math> or <math>p\mid d</math>. The second case is clearly impossible, because that would make <math>c=a+d>p</math>, violating condition <math>\text{(b)}</math>. So we have <math>p\mid 3</math>, meaning <math>p=3</math>. Condition <math>\text{(b)}</math> implies that <math>(b,a,c)=(0,1,2)</math> or <math>(a,b,c)\in (1,0,2)\rightarrow (-2,0,2)\text{ }(D\equiv 2\text{ mod 3})</math>. Now we return to condition <math>\text{(c)}</math>, which now implies that <math>(A,B,C)\equiv(-2,0,2)\pmod{3}</math>. Now, we set <math>B=3k</math> for increasing positive integer values of <math>k</math>. <math>B=0</math> yields no solutions. <math>B=3</math> gives <math>(A,B,C)=(1,3,5)</math>, giving us <math>1</math> solution. If <math>B=6</math>, we get <math>2</math> solutions, <math>(4,6,8)</math> and <math>(1,6,11)</math>. Proceeding in the manner, we see that if <math>B=48</math>, we get 16 solutions. However, <math>B=51</math> still gives <math>16</math> solutions because <math>C_\text{max}=2B-1=101>100</math>. Likewise, <math>B=54</math> gives <math>15</math> solutions. This continues until <math>B=96</math> gives one solution. <math>B=99</math> gives no solution. Thus, <math>N=1+2+\cdots+16+16+15+\cdots+1=2\cdot\frac{16(17)}{2}=16\cdot 17=\boxed{272}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | Condition c gives us that <math>A \equiv a \pmod p</math>, etc. Condition d then tells us that C and c can be expressed as <math>2B - A</math> and <math>2a - b</math>, respectively. However, plugging what we got from condition c into this, we find that <math>3a \equiv 3b \pmod p</math>. From there, we branch off into two cases; either <math>p = 3</math>, or <math>a \equiv b \pmod p</math>. Realize then that the second case leads to a contradiction, due to condition b. Then, <math>p = 3</math> means that <math>(b,a,c)</math> must be <math>(0, 1, 2)</math>. The bash from there is pretty similar to what was done in Solution 1. We get <math>\boxed{272}</math>. - Spacesam | ||
== See also == | == See also == | ||
{{AIME box|year=2013|n=I|num-b=14|after=Last Problem}} | {{AIME box|year=2013|n=I|num-b=14|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:41, 10 January 2020
Contents
Problem 15
Let be the number of ordered triples of integers satisfying the conditions (a) , (b) there exist integers , , and , and prime where , (c) divides , , and , and (d) each ordered triple and each ordered triple form arithmetic sequences. Find .
Solution
From condition (d), we have and . Condition states that , , and . We subtract the first two to get , and we do the same for the last two to get . We subtract these two to get . So or . The second case is clearly impossible, because that would make , violating condition . So we have , meaning . Condition implies that or . Now we return to condition , which now implies that . Now, we set for increasing positive integer values of . yields no solutions. gives , giving us solution. If , we get solutions, and . Proceeding in the manner, we see that if , we get 16 solutions. However, still gives solutions because . Likewise, gives solutions. This continues until gives one solution. gives no solution. Thus, .
Solution 2
Condition c gives us that , etc. Condition d then tells us that C and c can be expressed as and , respectively. However, plugging what we got from condition c into this, we find that . From there, we branch off into two cases; either , or . Realize then that the second case leads to a contradiction, due to condition b. Then, means that must be . The bash from there is pretty similar to what was done in Solution 1. We get . - Spacesam
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.