Difference between revisions of "2016 AMC 12B Problems/Problem 23"

(Created page with "=Problem= What is the volume of the region in three-dimensional space defined by the inequalities <math>|x|+|y|+|z|\le1</math> and <math>|x|+|y|+|z-1|\le1</math> <math>\text...")
 
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{4}\qquad\textbf{(C)}\ \frac{1}{3}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ 1</math>
 
<math>\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{4}\qquad\textbf{(C)}\ \frac{1}{3}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ 1</math>
 +
=Solution=
 +
{{solution}}
 +
==See Also==
 +
{{AMC12 box|year=2016|ab=B|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Revision as of 17:05, 21 February 2016

Problem

What is the volume of the region in three-dimensional space defined by the inequalities $|x|+|y|+|z|\le1$ and $|x|+|y|+|z-1|\le1$

$\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{4}\qquad\textbf{(C)}\ \frac{1}{3}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ 1$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png