Difference between revisions of "2008 AMC 10B Problems/Problem 14"
Ishankhare (talk | contribs) (→Solution) |
Mathnerd0120 (talk | contribs) (→Solution) |
||
Line 14: | Line 14: | ||
</math> | </math> | ||
− | ==Solution== | + | ==Solution 1== |
+ | |||
+ | Since <math>\angle ABO=90^\circ</math>, and <math>\angle BOA=30^\circ</math>, we know that this triangle is a [[Special Right Triangle]]. | ||
+ | |||
+ | We also know that <math>A</math> is <math>(5,0)</math>, so <math>A</math> lies on the x-axis. Therefore, <math>OA = 5</math>. | ||
+ | |||
+ | Since we know that this is a [[Special Right Triangle]], we can use the proportion <cmath>\frac{5}{\sqrt 3}=\frac{x}{1}</cmath> to find <math>AB</math>. | ||
+ | |||
+ | We find that <cmath>AB=\frac{5\sqrt 3}{3}</cmath> | ||
+ | |||
+ | That means that the coordinates of <math>A</math> are <math>\left(5,\frac{5\sqrt 3}3\right)</math>. | ||
+ | |||
+ | Rotate this triangle <math>90^\circ</math> counterclockwise around <math>O</math>, and you will find that <math>A</math> will end up in the second quadrant with the coordinates | ||
+ | <math>\boxed{ \left( -\frac{5\sqrt 3}3, 5\right) }</math>. | ||
+ | |||
+ | ==Solution 2== | ||
As <math>\angle ABO=90^\circ</math> and <math>A</math> in the first quadrant, we know that the <math>x</math> coordinate of <math>A</math> is <math>5</math>. We now need to pick a positive <math>y</math> coordinate for <math>A</math> so that we'll have <math>\angle AOB=30^\circ</math>. | As <math>\angle ABO=90^\circ</math> and <math>A</math> in the first quadrant, we know that the <math>x</math> coordinate of <math>A</math> is <math>5</math>. We now need to pick a positive <math>y</math> coordinate for <math>A</math> so that we'll have <math>\angle AOB=30^\circ</math>. |
Revision as of 21:59, 4 November 2016
Contents
Problem
Triangle has , , and in the first quadrant. In addition, and . Suppose that is rotated counterclockwise about . What are the coordinates of the image of ?
Solution 1
Since , and , we know that this triangle is a Special Right Triangle.
We also know that is , so lies on the x-axis. Therefore, .
Since we know that this is a Special Right Triangle, we can use the proportion to find .
We find that
That means that the coordinates of are .
Rotate this triangle counterclockwise around , and you will find that will end up in the second quadrant with the coordinates .
Solution 2
As and in the first quadrant, we know that the coordinate of is . We now need to pick a positive coordinate for so that we'll have .
By the Pythagorean theorem we have .
By the definition of sine, we have , hence .
Substituting into the previous equation, we get , hence .
This means that the coordinates of are .
After we rotate counterclockwise about , it will get into the second quadrant and have the coordinates . So the answer is .
See also
2008 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.