Difference between revisions of "1998 AHSME Problems/Problem 28"
(→Solution 2) |
m (→Solution 2) |
||
Line 23: | Line 23: | ||
Let <math>DB=x</math>. By the Pythagorean Theorem, <math>AB=\sqrt{(x+\sqrt{5})^{2}+2^2}</math>. Applying the angle bisector theorem again on triangle <math>APB</math>, we have <cmath>\frac{\sqrt{(x+\sqrt{5})^{2}+2^2}}{x}=\frac{\frac{\sqrt{5}\sqrt{24}}{5}}{\sqrt{5}}</cmath> | Let <math>DB=x</math>. By the Pythagorean Theorem, <math>AB=\sqrt{(x+\sqrt{5})^{2}+2^2}</math>. Applying the angle bisector theorem again on triangle <math>APB</math>, we have <cmath>\frac{\sqrt{(x+\sqrt{5})^{2}+2^2}}{x}=\frac{\frac{\sqrt{5}\sqrt{24}}{5}}{\sqrt{5}}</cmath> | ||
− | The right side simplifies to<math>\frac{ | + | The right side simplifies to<math>\frac{sqrt{24}}{3}</math>. Cross multiplying, squaring, and simplifying, we get a quadratic: <cmath>5x^2-6\sqrt{5}x-27=0</cmath> Solving this quadratic and taking the positive root gives <cmath>x=\frac{9\sqrt{5}}{5}</cmath> Finally, taking the desired ratio and canceling the roots gives <cmath>\frac{CD}{BD}=\frac{5}{9}</cmath> The answer is <math>\fbox{(B) 14}</math>. |
== See also == | == See also == |
Revision as of 09:55, 2 August 2016
Contents
Problem
In triangle , angle is a right angle and . Point is located on so that angle is twice angle . If , then , where and are relatively prime positive integers. Find .
Solution
Let , so and . Then, it is given that and
Now, through the use of trigonometric identities, . Solving yields that . Using the tangent addition identity, we find that , and
and . (This also may have been done on a calculator by finding directly)
Solution 2
Let and . By the Pythagorean Theorem, . Let point be on segment such that bisects . Thus, angles , , and are congruent. Applying the angle bisector theorem on , we get that and . Pythagorean Theorem gives .
Let . By the Pythagorean Theorem, . Applying the angle bisector theorem again on triangle , we have The right side simplifies to. Cross multiplying, squaring, and simplifying, we get a quadratic: Solving this quadratic and taking the positive root gives Finally, taking the desired ratio and canceling the roots gives The answer is .
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.