Difference between revisions of "1996 AIME Problems/Problem 15"
(→Solution 1 (trigonometry)) |
William122 (talk | contribs) (→Solution 1 (trigonometry)) |
||
Line 25: | Line 25: | ||
and the double and triple angle (<math>\cos 3x = 4\cos^3 x - 3\cos x</math>) formulas further simplify this to | and the double and triple angle (<math>\cos 3x = 4\cos^3 x - 3\cos x</math>) formulas further simplify this to | ||
− | <cmath>4\cos^3 2\theta - 4\cos^2 2\theta - 3\cos \theta + 3 = (4\cos^2 2\theta - 3)(\cos 2\theta - 1) = 0</cmath> | + | <cmath>4\cos^3 2\theta - 4\cos^2 2\theta - 3\cos 2\theta + 3 = (4\cos^2 2\theta - 3)(\cos 2\theta - 1) = 0</cmath> |
The only value of <math>\theta</math> that fits in this context comes from <math>4 \cos^2 2\theta - 3 = 0 \Longrightarrow \cos 2\theta = \frac{\sqrt{3}}{2} \Longrightarrow \theta = 15^{\circ}</math>. The answer is <math>\lfloor 1000r \rfloor = \left\lfloor 1000 \cdot \frac{180 - 5\theta}{180 - 3\theta} \right\rfloor = \left \lfloor \frac{7000}{9} \right \rfloor = \boxed{777}</math>. | The only value of <math>\theta</math> that fits in this context comes from <math>4 \cos^2 2\theta - 3 = 0 \Longrightarrow \cos 2\theta = \frac{\sqrt{3}}{2} \Longrightarrow \theta = 15^{\circ}</math>. The answer is <math>\lfloor 1000r \rfloor = \left\lfloor 1000 \cdot \frac{180 - 5\theta}{180 - 3\theta} \right\rfloor = \left \lfloor \frac{7000}{9} \right \rfloor = \boxed{777}</math>. |
Revision as of 10:50, 4 December 2016
Problem
In parallelogram , let be the intersection of diagonals and . Angles and are each twice as large as angle , and angle is times as large as angle . Find the greatest integer that does not exceed .
Contents
Solution
Solution 1 (trigonometry)
Let . Then , , and . Since is a parallelogram, it follows that . By the Law of Sines on ,
Dividing the two equalities yields
Pythagorean and product-to-sum identities yield
and the double and triple angle () formulas further simplify this to
The only value of that fits in this context comes from . The answer is .
Solution 2 (trigonometry)
Define as above. Since , it follows that , and so . The Law of Sines on yields that
Expanding using the sine double and triple angle formulas, we have
By the quadratic formula, we have , so (as the other roots are too large to make sense in context). The answer follows as above.
Solution 3
We will focus on . Let , so . Draw the perpendicular from intersecting at . Without loss of generality, let . Then , since is the circumcenter of . Then .
By the Exterior Angle Theorem, and . That implies that . That makes . Then since by AA ( and reflexive on ), .
Then by the Pythagorean Theorem, . That makes equilateral. Then . The answer follows as above.
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Final Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.