Difference between revisions of "2015 AMC 10A Problems/Problem 23"
(→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | The zeroes of the function <math>f(x)=x^2-ax+2a</math> are integers. What is the sum of | + | The zeroes of the function <math>f(x)=x^2-ax+2a</math> are integers. What is the sum of the possible values of <math>a?</math> |
<math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 18</math> | <math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 18</math> |
Revision as of 23:35, 13 February 2017
Contents
Problem
The zeroes of the function are integers. What is the sum of the possible values of
Solution 1
By Vieta's Formula, is the sum of the integral zeros of the function, and so is integral.
Because the zeros are integral, the discriminant of the function, , is a perfect square, say . Then adding 16 to both sides and completing the square yields Therefore and Let and ; then, and so . Listing all possible pairs (not counting transpositions because this does not affect (), , yields . These sum to , so our answer is .
Solution 2
Let and be the integer zeroes of the quadratic. Since the coefficient of the term is , the quadratic can be written as
By comparing this with ,
Plugging the first equation in the second, Rearranging gives These factors can be or
We want the number of distinct , and these factors gives . So the answer is .
See Also
2015 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.