Difference between revisions of "1954 AHSME Problems/Problem 23"

(Created page with "== Problem 23== If the margin made on an article costing <math>C</math> dollars and selling for <math>S</math> dollars is <math>M=\frac{1}{n}C</math>, then the margin is give...")
 
m (Solution)
 
Line 13: Line 13:
 
Doing some algebraic manipulation to get <math>M</math> on one side,
 
Doing some algebraic manipulation to get <math>M</math> on one side,
  
<math>M=\frac{1}{n}{S-M}</math>
+
<math>M=\frac{1}{n}(S-M)</math>
  
 
<math>M=\frac{S}{n}-\frac{M}{n}</math>
 
<math>M=\frac{S}{n}-\frac{M}{n}</math>

Latest revision as of 17:26, 15 April 2017

Problem 23

If the margin made on an article costing $C$ dollars and selling for $S$ dollars is $M=\frac{1}{n}C$, then the margin is given by:

$\textbf{(A)}\ M=\frac{1}{n-1}S\qquad\textbf{(B)}\ M=\frac{1}{n}S\qquad\textbf{(C)}\ M=\frac{n}{n+1}S\\ \textbf{(D)}\ M=\frac{1}{n+1}S\qquad\textbf{(E)}\ M=\frac{n}{n-1}S$

Solution

We are given the margin in terms of the cost of the article. Looking at the answers, it appears we need to find the margin in terms of the selling price. The relationship between cost and selling price is that selling price minus the margin is the cost, $S-M=C$.

Since $M=\frac{1}{n}C$ and $C=S-M$, $M=\frac{1}{n}(S-M)$.

Doing some algebraic manipulation to get $M$ on one side,

$M=\frac{1}{n}(S-M)$

$M=\frac{S}{n}-\frac{M}{n}$

$M+\frac{M}{n}=\frac{S}{n}$

$M(1+\frac{1}{n})=\frac{S}{n}$

$M=\frac{S}{n}\cdot \frac{1}{1+\frac{1}{n}}$

$M=\frac{S}{n+1}$

$M=\frac{1}{n+1}S \implies \boxed{\textbf{(D)} M=\frac{1}{n+1}S}$.

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png