Difference between revisions of "2018 AMC 8 Problems/Problem 18"

m
Line 3: Line 3:
  
 
<math>\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }28\qquad\textbf{(D) }36\qquad\textbf{(E) }42</math>
 
<math>\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }28\qquad\textbf{(D) }36\qquad\textbf{(E) }42</math>
 
 
  
 
==Solution==
 
==Solution==
 
We can first find the prime factorization of <math>23,232</math>, which is <math>2^6\cdot3^1\cdot11^2</math>. Now, we just add one to our powers and multiply. Therefore, the answer is <math>7*2*3=\boxed{42}, \textbf{(E)}</math> -shreyasb
 
We can first find the prime factorization of <math>23,232</math>, which is <math>2^6\cdot3^1\cdot11^2</math>. Now, we just add one to our powers and multiply. Therefore, the answer is <math>7*2*3=\boxed{42}, \textbf{(E)}</math> -shreyasb
  
 
+
==See Also==
 
 
 
{{AMC8 box|year=2018|num-b=17|num-a=19}}
 
{{AMC8 box|year=2018|num-b=17|num-a=19}}
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:42, 21 November 2018

Problem 18

How many positive factors does $23,232$ have?

$\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }28\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution

We can first find the prime factorization of $23,232$, which is $2^6\cdot3^1\cdot11^2$. Now, we just add one to our powers and multiply. Therefore, the answer is $7*2*3=\boxed{42}, \textbf{(E)}$ -shreyasb

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png