Difference between revisions of "2018 AMC 8 Problems/Problem 5"

Line 4: Line 4:
  
 
==Solution==
 
==Solution==
Rearranging the terms, we get <math>(1-2)+(3-4)+(5-6)+...(2017-2018)+2019</math>, and our answer is <math>-1009+2019=\boxed{1010}, \textbf{(E)}</math>
+
Rearranging the terms, we get <math>(1-2)+(3-4)+(5-6)+...(2017-2018)+2019</math>, and our answer is <math>-1009+2019=\boxed{1010}, \textbf{(E)}</math>- ProMathdunk123
  
  

Revision as of 12:51, 21 November 2018

Problem 5

What is the value of $1+3+5+\cdots+2017+2019-2-4-6-\cdots-2016-2018$?


Solution

Rearranging the terms, we get $(1-2)+(3-4)+(5-6)+...(2017-2018)+2019$, and our answer is $-1009+2019=\boxed{1010}, \textbf{(E)}$- ProMathdunk123


$\textbf{(A) }-1010\qquad\textbf{(B) }-1009\qquad\textbf{(C) }1008\qquad\textbf{(D) }1009\qquad \textbf{(E) }1010$

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions