Difference between revisions of "2018 AMC 8 Problems/Problem 24"

m (Note)
(Fixed grammar and improved clarity)
Line 35: Line 35:
 
==Solution==
 
==Solution==
  
Note that <math>EJCI</math> is a rhombus.
+
Note that <math>EJCI</math> is a rhombus by symmetry.
Let the side length of the cube be <math>s</math>. By the Pythagorean theorem, <math>EC= \sqrt 3s</math> and <math>JI=\sqrt 2s</math>. Since the area of a rhombus is half the product of it's diagonals, so the area of the cross section is <math>\frac{\sqrt 6s^2}{2}</math>. <math>R = \frac{\sqrt 6}2</math>. Thus <math>R^2 = \boxed{\textbf{(C) } \frac{3}{2}}</math>
+
Let the side length of the cube be <math>s</math>. By the Pythagorean theorem, <math>EC= \sqrt 3s</math> and <math>JI=\sqrt 2s</math>. Since the area of a rhombus is half the product of its diagonals, the area of the cross section is <math>\frac{\sqrt 6s^2}{2}</math>. This gives <math>R = \frac{\sqrt 6}2</math>. Thus <math>R^2 = \boxed{\textbf{(C) } \frac{3}{2}}</math>
  
 
==Note==
 
==Note==
In the 2008 AMC 10A, Question 21 (https://artofproblemsolving.com/wiki/index.php?title=2008_AMC_10A_Problems/Problem_21) was nearly identical to this question, it's the same but for this question, you have to look for the square of the area, not the actual area.
+
In the 2008 AMC 10A, Question 21 (https://artofproblemsolving.com/wiki/index.php?title=2008_AMC_10A_Problems/Problem_21) was nearly identical to this question, except that in this question, you have to look for the square of the area, not the actual area.
  
 
==See Also==
 
==See Also==

Revision as of 22:19, 1 December 2018

Problem 24

In the cube $ABCDEFGH$ with opposite vertices $C$ and $E,$ $J$ and $I$ are the midpoints of edges $\overline{FB}$ and $\overline{HD},$ respectively. Let $R$ be the ratio of the area of the cross-section $EJCI$ to the area of one of the faces of the cube. What is $R^2?$

[asy] size(6cm); pair A,B,C,D,EE,F,G,H,I,J; C = (0,0); B = (-1,1); D = (2,0.5); A = B+D; G = (0,2); F = B+G; H = G+D; EE = G+B+D; I = (D+H)/2; J = (B+F)/2; filldraw(C--I--EE--J--cycle,lightgray,black); draw(C--D--H--EE--F--B--cycle);  draw(G--F--G--C--G--H); draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J); label("$A$",A,E); label("$B$",B,W); label("$C$",C,S); label("$D$",D,E); label("$E$",EE,N); label("$F$",F,W); label("$G$",G,N); label("$H$",H,E); label("$I$",I,E); label("$J$",J,W); [/asy]

$\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}$

Solution

Note that $EJCI$ is a rhombus by symmetry. Let the side length of the cube be $s$. By the Pythagorean theorem, $EC= \sqrt 3s$ and $JI=\sqrt 2s$. Since the area of a rhombus is half the product of its diagonals, the area of the cross section is $\frac{\sqrt 6s^2}{2}$. This gives $R = \frac{\sqrt 6}2$. Thus $R^2 = \boxed{\textbf{(C) } \frac{3}{2}}$

Note

In the 2008 AMC 10A, Question 21 (https://artofproblemsolving.com/wiki/index.php?title=2008_AMC_10A_Problems/Problem_21) was nearly identical to this question, except that in this question, you have to look for the square of the area, not the actual area.

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png