Difference between revisions of "2016 AMC 12B Problems/Problem 17"
m (→Solution 3 (if you're running short on time)) |
m (→Solution 1: latexed it) |
||
Line 50: | Line 50: | ||
==Solution 1== | ==Solution 1== | ||
− | Get the area of the triangle by | + | Get the area of the triangle by [https://artofproblemsolving.com/wiki/index.php/Heron%27s_Formula Heron's Formula]: |
<cmath>\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{(12)(3)(4)(5)} = 12\sqrt{5}</cmath> | <cmath>\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{(12)(3)(4)(5)} = 12\sqrt{5}</cmath> | ||
− | Use the area to find the height AH with known base BC: | + | Use the area to find the height <math>AH</math> with known base <math>BC</math>: |
<cmath>Area = 12\sqrt{5} = \frac{1}{2}bh = \frac{1}{2}(8)(AH)</cmath> | <cmath>Area = 12\sqrt{5} = \frac{1}{2}bh = \frac{1}{2}(8)(AH)</cmath> | ||
<cmath>AH = 3\sqrt{5}</cmath> | <cmath>AH = 3\sqrt{5}</cmath> | ||
<cmath>BH = \sqrt{AB^2 - AH^2} = \sqrt{7^2 - (3\sqrt{5})^2} = 2</cmath> | <cmath>BH = \sqrt{AB^2 - AH^2} = \sqrt{7^2 - (3\sqrt{5})^2} = 2</cmath> | ||
<cmath>CH = BC - BH = 8 - 2 = 6</cmath> | <cmath>CH = BC - BH = 8 - 2 = 6</cmath> | ||
− | Apply | + | Apply the [https://artofproblemsolving.com/wiki/index.php/Angle_Bisector_Theorem Angle Bisector Theorem] on <math> \triangle ACH</math> and <math>\triangle ABH</math>, we get <math>AP:PH = 9:6</math> and <math>AQ:QH = 7:2</math>, respectively. |
− | To find AP, PH, AQ, and QH, apply variables, such that <math>AP:PH = 9:6</math> is <math>\frac{3\sqrt{5} - x}{x} = \frac{9}{6}</math> and <math>AQ:QH = 7:2</math> is <math>\frac{3\sqrt{5} - y}{y} = \frac{7}{2}</math>. Solving them out, you will get <math>AP = \frac{9\sqrt{5}}{5}</math>, <math>PH = \frac{6\sqrt{5}}{5}</math>, <math>AQ = \frac{7\sqrt{5}}{3}</math>, and <math>QH = \frac{2\sqrt{5}}{3}</math>. Then, since <math>AP + PQ = AQ</math> according to the Segment Addition Postulate, and thus manipulating, you get <math>PQ = AQ - AP = \frac{7\sqrt{5}}{3} - \frac{9\sqrt{5}}{5}</math> = <cmath>\boxed{\textbf{(D)}\frac{8}{15}\sqrt{5}}</cmath> | + | To find <math>AP</math>, <math>PH</math>, <math>AQ</math>, and <math>QH</math>, apply variables, such that <math>AP:PH = 9:6</math> is <math>\frac{3\sqrt{5} - x}{x} = \frac{9}{6}</math> and <math>AQ:QH = 7:2</math> is <math>\frac{3\sqrt{5} - y}{y} = \frac{7}{2}</math>. Solving them out, you will get <math>AP = \frac{9\sqrt{5}}{5}</math>, <math>PH = \frac{6\sqrt{5}}{5}</math>, <math>AQ = \frac{7\sqrt{5}}{3}</math>, and <math>QH = \frac{2\sqrt{5}}{3}</math>. Then, since <math>AP + PQ = AQ</math> according to the Segment Addition Postulate, and thus manipulating, you get <math>PQ = AQ - AP = \frac{7\sqrt{5}}{3} - \frac{9\sqrt{5}}{5}</math> = <cmath>\boxed{\textbf{(D)}\frac{8}{15}\sqrt{5}}</cmath> |
==Solution 2== | ==Solution 2== |
Revision as of 18:26, 15 November 2019
Contents
Problem
In shown in the figure, , , , and is an altitude. Points and lie on sides and , respectively, so that and are angle bisectors, intersecting at and , respectively. What is ?
Solution 1
Get the area of the triangle by Heron's Formula: Use the area to find the height with known base : Apply the Angle Bisector Theorem on and , we get and , respectively. To find , , , and , apply variables, such that is and is . Solving them out, you will get , , , and . Then, since according to the Segment Addition Postulate, and thus manipulating, you get =
Solution 2
Let the intersection of and be the point . Then let the foot of the altitude from to be . Note that is an inradius and that , where is the semiperimeter of the triangle.
Using Heron's Formula, we see that , so .
Then since and are parallel, and .
Thus, and , so .
By the Dual Principle, and . With the same method as Solution 1, and . Then
Solution 3 (if you're running short on time)
lies on altitude , which we find to have a length of by Heron's Formula and dividing twice the area by . From H we can construct a segment with on such that is parallel to . A similar construction gives on such that is parallel to . We can hence generate a system of ratios that will allow us to find . Note that such a system will generate a rational number for the ratio . Thus, we choose the only answer that has a term in it, giving us .
Solution 4
Let and . Then, . By the Pythagorean Theorem on right triangles and , we have Subtracting the prior from the latter yields . So, , , and . Continue with Solution 1.
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.