Difference between revisions of "2020 AMC 12A Problems/Problem 22"
(→Solution) |
(→Solution 2 (DeMoivre's Formula)) |
||
Line 22: | Line 22: | ||
<cmath>(2+i)^n=\left(\sqrt{5}\left(\frac{2}{\sqrt{5}}+\frac{i}{\sqrt{5}}\right)\right)^n=5^{\frac{n}{2}}e^{in\tan^{-1}\left(\frac{1}{2}\right)}=5^{\frac{n}{2}}\left(\cos \left(n\tan^{-1}\left(\frac{1}{2}\right)\right)+i\sin\left(n\tan^{-1}\left(\frac{1}{2}\right)\right)\right)</cmath> | <cmath>(2+i)^n=\left(\sqrt{5}\left(\frac{2}{\sqrt{5}}+\frac{i}{\sqrt{5}}\right)\right)^n=5^{\frac{n}{2}}e^{in\tan^{-1}\left(\frac{1}{2}\right)}=5^{\frac{n}{2}}\left(\cos \left(n\tan^{-1}\left(\frac{1}{2}\right)\right)+i\sin\left(n\tan^{-1}\left(\frac{1}{2}\right)\right)\right)</cmath> | ||
by DeMoivre's Formula. Letting <math>\theta=\tan^{-1}\left(\frac{1}{2}\right)</math>, we know that <math>a_n=5^{\frac{n}{2}}\cos \left(n\theta\right)</math> and <math>b_n=5^{\frac{n}{2}}\sin \left(n\theta\right)</math>. The desired sum then turns into | by DeMoivre's Formula. Letting <math>\theta=\tan^{-1}\left(\frac{1}{2}\right)</math>, we know that <math>a_n=5^{\frac{n}{2}}\cos \left(n\theta\right)</math> and <math>b_n=5^{\frac{n}{2}}\sin \left(n\theta\right)</math>. The desired sum then turns into | ||
− | <cmath>\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^n\cos\left(n\theta\right)\sin\left(n\theta\right)</cmath> | + | <cmath>\sum_{n=0}^{\infty}\frac{a_nb_n}{7^n}=\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^n\cos\left(n\theta\right)\sin\left(n\theta\right)</cmath> |
<cmath>=\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^n\sin\left(2n\theta\right)=\frac{1}{2}\text{Im}\left(\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^ne^{2in\theta}\right)</cmath> | <cmath>=\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^n\sin\left(2n\theta\right)=\frac{1}{2}\text{Im}\left(\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^ne^{2in\theta}\right)</cmath> | ||
This is now an infinite geometric series! After finding <math>\sin(2\theta)=2\cdot \frac{2}{\sqrt{5}}\cdot \frac{1}{\sqrt{5}}=\frac{4}{5}</math>, <math>\cos(2\theta)=\sqrt{1-\sin^2(2\theta)}=\frac{3}{5}</math>, we find | This is now an infinite geometric series! After finding <math>\sin(2\theta)=2\cdot \frac{2}{\sqrt{5}}\cdot \frac{1}{\sqrt{5}}=\frac{4}{5}</math>, <math>\cos(2\theta)=\sqrt{1-\sin^2(2\theta)}=\frac{3}{5}</math>, we find |
Revision as of 01:11, 4 February 2020
Problem
Let and be the sequences of real numbers such that for all integers , where . What is
Solution 1
Square the given equality to yield so and
Solution 2 (DeMoivre's Formula)
We rewrite by DeMoivre's Formula. Letting , we know that and . The desired sum then turns into This is now an infinite geometric series! After finding , , we find ~ktong
See Also
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.