Difference between revisions of "2020 AMC 12B Problems/Problem 7"

(Created page with "==Problem== Two nonhorizontal, non vertical lines in the <math>xy</math>-coordinate plane intersect to form a <math>45^{\circ}</math> angle. One line has slope equal to <math>...")
 
(Problem)
Line 3: Line 3:
  
 
<math>\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6</math>
 
<math>\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6</math>
 +
 +
==See Also==
 +
 +
{{AMC12 box|year=2020|ab=B|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Revision as of 20:45, 7 February 2020

Problem

Two nonhorizontal, non vertical lines in the $xy$-coordinate plane intersect to form a $45^{\circ}$ angle. One line has slope equal to $6$ times the slope of the other line. What is the greatest possible value of the product of the slopes of the two lines?

$\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6$

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png