Difference between revisions of "2020 AMC 12B Problems/Problem 15"
(→Problem) |
|||
Line 4: | Line 4: | ||
<math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math> | <math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math> | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC12 box|year=2020|ab=B|num-b=14|num-a=16}} | ||
+ | {{MAA Notice}} |
Revision as of 21:39, 7 February 2020
Problem
There are people standing equally spaced around a circle. Each person knows exactly of the other people: the people standing next to her or him,as well as the person directly across the circle. How many ways are there for the people to split up into pairs so that the members of each pair know each other?
See Also
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.