Difference between revisions of "2020 AMC 12B Problems/Problem 24"

(Creation of Page)
 
(Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
none as of yet...
+
Bash.
 +
Since <math>96=2^5\times 3</math>, for the number of <math>f_n</math>, we have the following cases:
 +
 
 +
Case 1: <math>n=1</math>, we have <math>\{f_1\}=\{96\}</math>, only 1 case.
 +
 
 +
Case 2: <math>n=2</math>, we have <math>\{f_1,f_2\}=\{3,2^5\}, \{6,2^4\},...,\{48,2\}</math>, totally <math>5\cdot 2!=10</math> cases.
 +
 
 +
Case 3: <math>n=3</math>, we have <math>\{f_1,f_2,f_3\}=\{3,2^3,2^2\},\{3,2^1,2^4\},\{6,2^2,2^2\},\{6,2^3,2^1\}, \{12,2^2,2^1\},\{24,2,2\}</math>, totally <math>\frac{3!}{2!}\cdot 2+4\cdot 3!=30</math> cases.
 +
 
 +
Case 4: <math>n=4</math>, we have <math>\{f_1,f_2,f_3,f_4\}=\{3,2^2,2^2,2\},\{3,2^3,2,2\},\{6,2^2,2,2\},\{12,2,2,2\}</math>, totally <math>\frac{4!}{2!}\cdot 3+\frac{4!}{3!}=40</math> cases.
 +
 
 +
Case 5: <math>n=5</math>, we have <math>\{f_1,f_2,f_3,f_4,f_5\}=\{3,2^2,2,2,2\},\{6,2,2,2,2\}</math>, totally <math>\frac{5!}{3!}+\frac{5!}{4!}=25</math> cases.
 +
 
 +
Case 6: <math>n=6</math>, we have <math>\{f_1,f_2,f_3,f_4,f_5,f_6\}=\{3,2,2,2,2,2\}</math>, totally <math>\frac{6!}{5!}=6</math> cases.
 +
 
 +
Thus, add all of them together, we have <math>1+10+30+40+25+6=112</math> cases. Put <math>\boxed{A}</math>.
 +
 
 +
~FANYUCHEN20020715
  
 
{{AMC12 box|year=2020|ab=B|num-b=23|num-a=25}}
 
{{AMC12 box|year=2020|ab=B|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:22, 8 February 2020

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product\[n = f_1\cdot f_2\cdots f_k,\]where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$?

$\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

Solution

Bash. Since $96=2^5\times 3$, for the number of $f_n$, we have the following cases:

Case 1: $n=1$, we have $\{f_1\}=\{96\}$, only 1 case.

Case 2: $n=2$, we have $\{f_1,f_2\}=\{3,2^5\}, \{6,2^4\},...,\{48,2\}$, totally $5\cdot 2!=10$ cases.

Case 3: $n=3$, we have $\{f_1,f_2,f_3\}=\{3,2^3,2^2\},\{3,2^1,2^4\},\{6,2^2,2^2\},\{6,2^3,2^1\}, \{12,2^2,2^1\},\{24,2,2\}$, totally $\frac{3!}{2!}\cdot 2+4\cdot 3!=30$ cases.

Case 4: $n=4$, we have $\{f_1,f_2,f_3,f_4\}=\{3,2^2,2^2,2\},\{3,2^3,2,2\},\{6,2^2,2,2\},\{12,2,2,2\}$, totally $\frac{4!}{2!}\cdot 3+\frac{4!}{3!}=40$ cases.

Case 5: $n=5$, we have $\{f_1,f_2,f_3,f_4,f_5\}=\{3,2^2,2,2,2\},\{6,2,2,2,2\}$, totally $\frac{5!}{3!}+\frac{5!}{4!}=25$ cases.

Case 6: $n=6$, we have $\{f_1,f_2,f_3,f_4,f_5,f_6\}=\{3,2,2,2,2,2\}$, totally $\frac{6!}{5!}=6$ cases.

Thus, add all of them together, we have $1+10+30+40+25+6=112$ cases. Put $\boxed{A}$.

~FANYUCHEN20020715

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png