Difference between revisions of "2020 AMC 12B Problems/Problem 7"

m
Line 8: Line 8:
  
 
~JHawk0224
 
~JHawk0224
 +
 +
==Video Solution==
 +
Two solutions
 +
https://youtu.be/6ujfjGLzVoE
 +
 +
~IceMatrix
  
 
==See Also==
 
==See Also==

Revision as of 02:00, 8 February 2020

Problem

Two nonhorizontal, non vertical lines in the $xy$-coordinate plane intersect to form a $45^{\circ}$ angle. One line has slope equal to $6$ times the slope of the other line. What is the greatest possible value of the product of the slopes of the two lines?

$\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6$

Solution

Let one of the lines have equation $y=ax$. Let $\theta$ be the angle that line makes with the x-axis, so $\tan(\theta)=a$. The other line will have a slope of $\tan(45^{\circ}+\theta)=\frac{\tan(45^{\circ})+\tan(\theta)}{1-\tan(45^{\circ})\tan(\theta)} = \frac{1+a}{1-a}$. Since the slope of one line is $6$ times the other, and $a$ is the smaller slope, $6a = \frac{1+a}{1-a} \implies 6a-6a^2=1+a \implies 6a^2-5a+1=0 \implies a=\frac{1}{2},\frac{1}{3}$. If $a = \frac{1}{2}$, the other line will have slope $\frac{1+\frac{1}{2}}{1-\frac{1}{2}} = 3$. If $a = \frac{1}{3}$, the other line will have slope $\frac{1+\frac{1}{3}}{1-\frac{1}{3}} = 2$. The first case gives the bigger product of $\frac{3}{2}$, so our answer is $\boxed{\textbf{(C)}\  \frac32}$.

~JHawk0224

Video Solution

Two solutions https://youtu.be/6ujfjGLzVoE

~IceMatrix

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png