Difference between revisions of "2020 AMC 12B Problems/Problem 10"

m
Line 5: Line 5:
 
<math>\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}</math>
 
<math>\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}</math>
  
==Solution 1(Coordinate Bash)==
+
==Solution 1 (Angle Chasing/Trig)==
 +
Let <math>O</math> be the center of the circle and the point of tangency between <math>\omega</math> and <math>\overline{AD}</math> be represented by <math>K</math>. We know that <math>\overline{AK} = \overline{KD} = \overline{DM} = \frac{1}{2}</math>. Consider the right triangle <math>\bigtriangleup ADM</math>. Let <math>\measuredangle AMD = \theta</math>.
 +
 
 +
Since <math>\omega</math> is tangent to <math>\overline{DC}</math> at <math>M</math>, <math>\measuredangle PMO = 90 - \theta</math>. Now, consider <math>\bigtriangleup POM</math>. This triangle is iscoceles because <math>\overline{PO}</math> and <math>\overline{OM}</math> are both radii of <math>\omega</math>. Therefore, <math>\measuredangle POM = 180 - 2(90 - \theta) = 2\theta</math>.
 +
 
 +
We can now use Law of Cosines on <math>\angle{POM}</math> to find the length of <math>{PM}</math> and subtract it from the length of <math>{AM}</math> to find <math>{AP}</math>. Since <math>\cos{\theta} = \frac{1}{\sqrt{5}}</math> and <math>\sin{\theta} = \frac{2}{\sqrt{5}}</math>, the double angle formula tells us that <math>\cos{2\theta} = -\frac{3}{5}</math>. We have
 +
<cmath>
 +
PM^2 = \frac{1}{2} - \frac{1}{2}\cos{2\theta} \implies PM = \frac{2\sqrt{5}}{5}
 +
</cmath>
 +
By Pythagorean theorem, we find that <math>AM = \frac{\sqrt{5}}{2} \implies \boxed{\textbf{(B) } \frac{\sqrt5}{10}}</math>
 +
 
 +
~awesome1st
 +
==Solution 2(Coordinate Bash)==
  
 
Place circle <math>\omega</math> in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for <math>\omega</math> as <math>x^2+y^2=\frac{1}{4}</math>, because it is not translated and the radius is <math>\frac{1}{2}</math>.  
 
Place circle <math>\omega</math> in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for <math>\omega</math> as <math>x^2+y^2=\frac{1}{4}</math>, because it is not translated and the radius is <math>\frac{1}{2}</math>.  
Line 15: Line 27:
 
We plug this back into the linear equation to find <math>y=\frac{3}{10}</math>, and so <math>P=\left(-\frac{2}{5}, \frac{3}{10}\right)</math>. Finally, we use distance formula on <math>A</math> and <math>P</math> to get <math>AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}</math>.
 
We plug this back into the linear equation to find <math>y=\frac{3}{10}</math>, and so <math>P=\left(-\frac{2}{5}, \frac{3}{10}\right)</math>. Finally, we use distance formula on <math>A</math> and <math>P</math> to get <math>AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}</math>.
  
==Solution 2(Power of a Point)==
+
==Solution 3(Power of a Point)==
  
 
Let circle <math>\omega</math> intersect <math>\overline{AB}</math> at point <math>N</math>. By Power of a Point, we have <math>AN^2=AP\cdot AM</math>. We know <math>AN=\frac{1}{2}</math> because <math>N</math> is the midpoint of <math>\overline{AB}</math>, and we can easily find <math>AM</math> by the Pythagorean Theorem, which gives us <math>AM=\sqrt{1^2+\left(\frac{1}{2}\right)^2}=\frac{\sqrt{5}}{2}</math>. Our equation is now <math>\frac{1}{4}=AP\cdot \frac{\sqrt{5}}{2}</math>, or <math>AP=\frac{2}{4\sqrt{5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\cdot 5}</math>, thus our answer is  
 
Let circle <math>\omega</math> intersect <math>\overline{AB}</math> at point <math>N</math>. By Power of a Point, we have <math>AN^2=AP\cdot AM</math>. We know <math>AN=\frac{1}{2}</math> because <math>N</math> is the midpoint of <math>\overline{AB}</math>, and we can easily find <math>AM</math> by the Pythagorean Theorem, which gives us <math>AM=\sqrt{1^2+\left(\frac{1}{2}\right)^2}=\frac{\sqrt{5}}{2}</math>. Our equation is now <math>\frac{1}{4}=AP\cdot \frac{\sqrt{5}}{2}</math>, or <math>AP=\frac{2}{4\sqrt{5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\cdot 5}</math>, thus our answer is  
 
<math>\boxed{\textbf{(B) } \frac{\sqrt5}{10}}.</math>
 
<math>\boxed{\textbf{(B) } \frac{\sqrt5}{10}}.</math>
  
==Solution 3==
+
==Solution 4==
 
Take <math>O</math> as the center and draw segment <math>ON</math> perpendicular to <math>AM</math>, <math>ON\cap AM=N</math>, link <math>OM</math>. Then we have <math>OM\parallel AD</math>. So <math>\angle DAM=\angle OMA</math>. Since <math>AD=2AM=2OM=1</math>, we have <math>\cos\angle DAM=\cos\angle OMP=\frac{2}{\sqrt{5}}</math>. As a result, <math>NM=OM\cos\angle OMP=\frac{1}{2}\cdot \frac{2}{\sqrt{5}}=\frac{1}{\sqrt{5}}.</math> Thus <math>PM=2NM=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}</math>. Since <math>AM=\frac{\sqrt{5}}{2}</math>, we have <math>AP=AM-PM=\frac{\sqrt{5}}{10}</math>. Put <math>\boxed{B}</math>.
 
Take <math>O</math> as the center and draw segment <math>ON</math> perpendicular to <math>AM</math>, <math>ON\cap AM=N</math>, link <math>OM</math>. Then we have <math>OM\parallel AD</math>. So <math>\angle DAM=\angle OMA</math>. Since <math>AD=2AM=2OM=1</math>, we have <math>\cos\angle DAM=\cos\angle OMP=\frac{2}{\sqrt{5}}</math>. As a result, <math>NM=OM\cos\angle OMP=\frac{1}{2}\cdot \frac{2}{\sqrt{5}}=\frac{1}{\sqrt{5}}.</math> Thus <math>PM=2NM=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}</math>. Since <math>AM=\frac{\sqrt{5}}{2}</math>, we have <math>AP=AM-PM=\frac{\sqrt{5}}{10}</math>. Put <math>\boxed{B}</math>.
  

Revision as of 10:22, 8 February 2020

Problem

In unit square $ABCD,$ the inscribed circle $\omega$ intersects $\overline{CD}$ at $M,$ and $\overline{AM}$ intersects $\omega$ at a point $P$ different from $M.$ What is $AP?$

$\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}$

Solution 1 (Angle Chasing/Trig)

Let $O$ be the center of the circle and the point of tangency between $\omega$ and $\overline{AD}$ be represented by $K$. We know that $\overline{AK} = \overline{KD} = \overline{DM} = \frac{1}{2}$. Consider the right triangle $\bigtriangleup ADM$. Let $\measuredangle AMD = \theta$.

Since $\omega$ is tangent to $\overline{DC}$ at $M$, $\measuredangle PMO = 90 - \theta$. Now, consider $\bigtriangleup POM$. This triangle is iscoceles because $\overline{PO}$ and $\overline{OM}$ are both radii of $\omega$. Therefore, $\measuredangle POM = 180 - 2(90 - \theta) = 2\theta$.

We can now use Law of Cosines on $\angle{POM}$ to find the length of ${PM}$ and subtract it from the length of ${AM}$ to find ${AP}$. Since $\cos{\theta} = \frac{1}{\sqrt{5}}$ and $\sin{\theta} = \frac{2}{\sqrt{5}}$, the double angle formula tells us that $\cos{2\theta} = -\frac{3}{5}$. We have \[PM^2 = \frac{1}{2} - \frac{1}{2}\cos{2\theta} \implies PM = \frac{2\sqrt{5}}{5}\] By Pythagorean theorem, we find that $AM = \frac{\sqrt{5}}{2} \implies \boxed{\textbf{(B) } \frac{\sqrt5}{10}}$

~awesome1st

Solution 2(Coordinate Bash)

Place circle $\omega$ in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for $\omega$ as $x^2+y^2=\frac{1}{4}$, because it is not translated and the radius is $\frac{1}{2}$.

We have $A=\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $M=\left(0, -\frac{1}{2}\right)$. The slope of the line passing through these two points is $\frac{\frac{1}{2}+\frac{1}{2}}{-\frac{1}{2}-0}=\frac{1}{-\frac{1}{2}}=-2$, and the $y$-intercept is simply $M$. This gives us the line passing through both points as $y=-2x-\frac{1}{2}$.

We substitute this into the equation for the circle to get $x^2+\left(-2x-\frac{1}{2}\right)^2=\frac{1}{4}$, or $x^2+4x^2+2x+\frac{1}{4}=\frac{1}{4}$. Simplifying gives $x(5x+2)=0$. The roots of this quadratic are $x=0$ and $x=-\frac{2}{5}$, but if $x=0$ we get point $M$, so we only want $x=-\frac{2}{5}$.

We plug this back into the linear equation to find $y=\frac{3}{10}$, and so $P=\left(-\frac{2}{5}, \frac{3}{10}\right)$. Finally, we use distance formula on $A$ and $P$ to get $AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}$.

Solution 3(Power of a Point)

Let circle $\omega$ intersect $\overline{AB}$ at point $N$. By Power of a Point, we have $AN^2=AP\cdot AM$. We know $AN=\frac{1}{2}$ because $N$ is the midpoint of $\overline{AB}$, and we can easily find $AM$ by the Pythagorean Theorem, which gives us $AM=\sqrt{1^2+\left(\frac{1}{2}\right)^2}=\frac{\sqrt{5}}{2}$. Our equation is now $\frac{1}{4}=AP\cdot \frac{\sqrt{5}}{2}$, or $AP=\frac{2}{4\sqrt{5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\cdot 5}$, thus our answer is $\boxed{\textbf{(B) } \frac{\sqrt5}{10}}.$

Solution 4

Take $O$ as the center and draw segment $ON$ perpendicular to $AM$, $ON\cap AM=N$, link $OM$. Then we have $OM\parallel AD$. So $\angle DAM=\angle OMA$. Since $AD=2AM=2OM=1$, we have $\cos\angle DAM=\cos\angle OMP=\frac{2}{\sqrt{5}}$. As a result, $NM=OM\cos\angle OMP=\frac{1}{2}\cdot \frac{2}{\sqrt{5}}=\frac{1}{\sqrt{5}}.$ Thus $PM=2NM=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$. Since $AM=\frac{\sqrt{5}}{2}$, we have $AP=AM-PM=\frac{\sqrt{5}}{10}$. Put $\boxed{B}$.

~FANYUCHEN20020715

Video Solution

https://youtu.be/6ujfjGLzVoE

~IceMatrix

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png