Difference between revisions of "1954 AHSME Problems/Problem 14"

(Solution)
 
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
 
<math>\sqrt{\frac{4x^4}{4x^4}+\frac{(x^4-1)^2}{4x^4}}\implies\sqrt{\frac{x^8-2x^4+1+4x^4}{4x^4}}\implies \sqrt{\frac{(x^4+1)^2}{(2x^2)^2}}\implies \frac{x^4+1}{2x^2}\implies\frac{x^2}{2}+\frac{1}{2x^2}</math>, <math>\fbox{E}</math>
 
<math>\sqrt{\frac{4x^4}{4x^4}+\frac{(x^4-1)^2}{4x^4}}\implies\sqrt{\frac{x^8-2x^4+1+4x^4}{4x^4}}\implies \sqrt{\frac{(x^4+1)^2}{(2x^2)^2}}\implies \frac{x^4+1}{2x^2}\implies\frac{x^2}{2}+\frac{1}{2x^2}</math>, <math>\fbox{E}</math>
 +
 +
==See Also==
 +
 +
{{AHSME 50p box|year=1954|num-b=13|num-a=15}}
 +
 +
{{MAA Notice}}

Latest revision as of 00:26, 28 February 2020

Problem 14

When simplified $\sqrt{1+ \left (\frac{x^4-1}{2x^2} \right )^2}$ equals:

$\textbf{(A)}\ \frac{x^4+2x^2-1}{2x^2} \qquad \textbf{(B)}\ \frac{x^4-1}{2x^2} \qquad \textbf{(C)}\ \frac{\sqrt{x^2+1}}{2}\\ \textbf{(D)}\ \frac{x^2}{\sqrt{2}}\qquad\textbf{(E)}\ \frac{x^2}{2}+\frac{1}{2x^2}$

Solution

$\sqrt{\frac{4x^4}{4x^4}+\frac{(x^4-1)^2}{4x^4}}\implies\sqrt{\frac{x^8-2x^4+1+4x^4}{4x^4}}\implies \sqrt{\frac{(x^4+1)^2}{(2x^2)^2}}\implies \frac{x^4+1}{2x^2}\implies\frac{x^2}{2}+\frac{1}{2x^2}$, $\fbox{E}$

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png