Difference between revisions of "2020 AMC 12A Problems/Problem 22"
m |
|||
Line 19: | Line 19: | ||
== Solution 2 (DeMoivre's Formula) == | == Solution 2 (DeMoivre's Formula) == | ||
− | Note that <math>(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)</math>. Let <math>\theta = \arctan (1/2)</math>, then, we know that <math>(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right)</math>, so <math>(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n</math>. Therefore, <math>\sum_{n=0}^\infty\frac{a_nb_n}{7^n} = \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} =</math> <math>\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta) = \frac{1}{2} \text{im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right)</math>. Aha <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>. We can quickly see that <math>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5}</math>. <math>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}</math>. Therefore, <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i</math>. The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}}</math>.(Which is answer choice <math>\textbf{( | + | Note that <math>(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)</math>. Let <math>\theta = \arctan (1/2)</math>, then, we know that <math>(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right)</math>, so <math>(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n</math>. Therefore, <math>\sum_{n=0}^\infty\frac{a_nb_n}{7^n} = \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} =</math> <math>\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta) = \frac{1}{2} \text{im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right)</math>. Aha <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>. We can quickly see that <math>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5}</math>. <math>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}</math>. Therefore, <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i</math>. The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}}</math>.(Which is answer choice <math>\textbf{(B)}</math> |
− | ~AopsUser101, minor edit by vsamc stating that the answer choice is | + | ~AopsUser101, minor edit by vsamc stating that the answer choice is B |
==Solution 3== | ==Solution 3== | ||
− | Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields <math>\tfrac{1}{4}\sum_{n\ge 0}\tfrac{(3+4i)^n+(3-4i)^n}{7^n}=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}+\tfrac{1}{1-(\tfrac{3-4i}{7})}]=\tfrac{1}{4}[\tfrac{7}{7-(3+4i)}+\tfrac{7}{7-(3-4i)}]=\tfrac{1}{4}[\tfrac{7}{4-4i}+\tfrac{7}{4+4i}]=\tfrac{1}{4}[\tfrac{7(4+4i)}{32}+{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32}=\boxed{\tfrac{7}{16}}\textbf{( | + | Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields <math>\tfrac{1}{4}\sum_{n\ge 0}\tfrac{(3+4i)^n+(3-4i)^n}{7^n}=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}+\tfrac{1}{1-(\tfrac{3-4i}{7})}]=\tfrac{1}{4}[\tfrac{7}{7-(3+4i)}+\tfrac{7}{7-(3-4i)}]=\tfrac{1}{4}[\tfrac{7}{4-4i}+\tfrac{7}{4+4i}]=\tfrac{1}{4}[\tfrac{7(4+4i)}{32}+{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32}=\boxed{\tfrac{7}{16}}\textbf{(B)}</math> |
-vsamc | -vsamc | ||
==See Also== | ==See Also== |
Revision as of 14:39, 13 March 2020
Problem
Let and be the sequences of real numbers such that for all integers , where . What is
Solution 1
Square the given equality to yield so and
Solution 2 (DeMoivre's Formula)
Note that . Let , then, we know that , so . Therefore, . Aha is a geometric sequence that evaluates to . We can quickly see that . . Therefore, . The imaginary part is , so our answer is .(Which is answer choice
~AopsUser101, minor edit by vsamc stating that the answer choice is B
Solution 3
Clearly . So we have . By linearity, we have the latter is equivalent to . Expanding the summand yields -vsamc
See Also
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.