Difference between revisions of "2001 AMC 10 Problems/Problem 11"

m (small fixes)
Line 1: Line 1:
== Problem ==
+
==Problem==
  
 
Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains <math> 8 </math> unit squares. The second ring contains <math>16</math> unit squares. If we continue this process, the number of unit squares in the <math>100^\text{th}</math> ring is
 
Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains <math> 8 </math> unit squares. The second ring contains <math>16</math> unit squares. If we continue this process, the number of unit squares in the <math>100^\text{th}</math> ring is
  
<math> \textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404 </math>
+
<math>\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404</math>
  
== Solutions ==
+
==Solution==
 
+
===Solution 1===
=== Solution 1 ===
 
  
 
We can partition the <math> n^\text{th} </math> ring into <math> 4 </math> rectangles: two containing <math> 2n+1 </math> unit squares and two containing <math> 2n-1 </math> unit squares.
 
We can partition the <math> n^\text{th} </math> ring into <math> 4 </math> rectangles: two containing <math> 2n+1 </math> unit squares and two containing <math> 2n-1 </math> unit squares.
Line 15: Line 14:
 
Thus, the <math>100^\text{th}</math> ring has <math> 8 \times 100 = \boxed{\textbf{(C)} 800} </math> unit squares.
 
Thus, the <math>100^\text{th}</math> ring has <math> 8 \times 100 = \boxed{\textbf{(C)} 800} </math> unit squares.
  
=== Solution 2 (Alternate Solution) ===
+
===Solution 2===
  
 
We can make the <math> n^\text{th} </math> ring by removing a square of side length <math> 2n-1 </math> from a square of side length <math> 2n+1 </math>.  
 
We can make the <math> n^\text{th} </math> ring by removing a square of side length <math> 2n-1 </math> from a square of side length <math> 2n+1 </math>.  

Revision as of 20:17, 16 March 2020

Problem

Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains $8$ unit squares. The second ring contains $16$ unit squares. If we continue this process, the number of unit squares in the $100^\text{th}$ ring is

$\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404$

Solution

Solution 1

We can partition the $n^\text{th}$ ring into $4$ rectangles: two containing $2n+1$ unit squares and two containing $2n-1$ unit squares.

There are $2(2n+1)+2(2n-1)=4n+2+4n-2=8n$ unit squares in the $n^\text{th}$ ring.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)} 800}$ unit squares.

Solution 2

We can make the $n^\text{th}$ ring by removing a square of side length $2n-1$ from a square of side length $2n+1$.

This ring contains $(2n+1)^2-(2n-1)^2=(4n^2+4n+1)-(4n^2-4n+1)=8n$ unit squares.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)}\ 800}$ unit squares.

See Also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png