Difference between revisions of "2016 AMC 10B Problems/Problem 25"
Coltsfan10 (talk | contribs) |
m (→Solution 2) |
||
Line 34: | Line 34: | ||
==Solution 2== | ==Solution 2== | ||
− | <math>x = \lfloor x \rfloor + \{ x \}</math> so we have <cmath>f(x) = \sum_{k=2}^{10} \lfloor k \{ x \} \rfloor</cmath> | + | <math>x = \lfloor x \rfloor + \{ x \}</math> so we have <cmath>f(x) = \sum_{k=2}^{10} \lfloor k \{ x \} \rfloor.</cmath> Clearly, the value of <math>\lfloor k \{ x \} \rfloor</math> changes only when <math>x</math> is equal to any of the fractions <math>\frac{1}{k}, \frac{2}{k} \dots \frac{k-1}{k}</math>. To get all the fractions, Graphing this function gives us <math>46</math> different fractions but on an average, <math>3</math> in each of the <math>5</math> intervals don’t work. This means there are a total of <math>\fbox{\textbf{(A)}\ 32}</math> different possible values of <math>f(x)</math>. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|num-b=24|after=Last Problem}} | {{AMC10 box|year=2016|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:44, 6 August 2020
Contents
[hide]Problem
Let , where
denotes the greatest integer less than or equal to
. How many distinct values does
assume for
?
Solution 1
Since , we have
The function can then be simplified into
which becomes
We can see that for each value of ,
can equal integers from
to
.
Clearly, the value of changes only when
is equal to any of the fractions
.
So we want to count how many distinct fractions less than have the form
where
. We can find this easily by computing
where is the Euler Totient Function. Basically
counts the number of fractions with
as its denominator (after simplification). This comes out to be
.
Because the value of is at least
and can increase
times, there are a total of
different possible values of
.
Solution 2
so we have
Clearly, the value of
changes only when
is equal to any of the fractions
. To get all the fractions, Graphing this function gives us
different fractions but on an average,
in each of the
intervals don’t work. This means there are a total of
different possible values of
.
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.