Difference between revisions of "2014 AMC 10B Problems/Problem 25"
m (→See also=) |
|||
Line 109: | Line 109: | ||
~IceMatrix | ~IceMatrix | ||
− | =See also== | + | ==See also== |
{{AMC10 box|year=2014|ab=B|num-b=24|after=Last Problem}} | {{AMC10 box|year=2014|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:41, 29 September 2020
- The following problem is from both the 2014 AMC 12B #22 and 2014 AMC 10B #25, so both problems redirect to this page.
Problem
In a small pond there are eleven lily pads in a row labeled through . A frog is sitting on pad . When the frog is on pad , , it will jump to pad with probability and to pad with probability . Each jump is independent of the previous jumps. If the frog reaches pad it will be eaten by a patiently waiting snake. If the frog reaches pad it will exit the pond, never to return. What is the probability that the frog will escape without being eaten by the snake?
Solution 1
A long, but straightforward bash:
Define to be the probability that the frog survives starting from pad N.
Then note that by symmetry, , since the probabilities of the frog moving subsequently in either direction from pad 5 are equal.
We therefore seek to rewrite in terms of , using the fact that
as said in the problem.
Hence
Returning to our original equation:
Returning to our original equation:
Cleaing up the coefficients, we have:
Hence,
Or set :
Since , .
Solution 2
Notice that the probabilities are symmetrical around the fifth lily pad. If the frog is on the fifth lily pad, there is a chance that it escapes and a that it gets eaten. Now, let represent the probability that the frog escapes if it is currently on pad . We get the following system of equations: We want to find , since the frog starts at pad . Solving the above system yields , so the answer is .
Video Solution
https://www.youtube.com/watch?v=0aysy6YUj1E ~ MathEx
Video Solution 2
~IceMatrix
See also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.