Difference between revisions of "1986 AIME Problems/Problem 6"
m |
(solution) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
The pages of a book are numbered <math>1_{}^{}</math> through <math>n_{}^{}</math>. When the page numbers of the book were added, one of the page numbers was mistakenly added twice, resulting in an incorrect sum of <math>1986_{}^{}</math>. What was the number of the page that was added twice? | The pages of a book are numbered <math>1_{}^{}</math> through <math>n_{}^{}</math>. When the page numbers of the book were added, one of the page numbers was mistakenly added twice, resulting in an incorrect sum of <math>1986_{}^{}</math>. What was the number of the page that was added twice? | ||
+ | |||
== Solution == | == Solution == | ||
− | {{ | + | Denote the page number as <math>x</math>, with <math>x < n</math>. The sum formula shows that <math>\frac{n(n + 1)}{2} + x = 1986</math>. Since <math>x</math> cannot be very large, disregard it for now and solve <math>\frac{n(n+1)}{2} = 1986</math>. The positive root for <math>n \approx \sqrt{3972} \approx 63</math>. Quickly testing, we find that <math>63</math> is too large, but if we plug in <math>62</math> we find that <math>\frac{62(63)}{2} + x = 1986 \Longrightarrow x = 33</math>, our solution. |
== See also == | == See also == | ||
− | + | {{AIME box|year=1986|num-b=5|num-a=7}} | |
− | + | [[Category:Intermediate Number Theory Problems]] |
Revision as of 19:17, 23 March 2007
Problem
The pages of a book are numbered through . When the page numbers of the book were added, one of the page numbers was mistakenly added twice, resulting in an incorrect sum of . What was the number of the page that was added twice?
Solution
Denote the page number as , with . The sum formula shows that . Since cannot be very large, disregard it for now and solve . The positive root for . Quickly testing, we find that is too large, but if we plug in we find that , our solution.
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |