Difference between revisions of "1996 AIME Problems/Problem 5"
(→Solution) |
Pi is 3.14 (talk | contribs) (→Solution 1) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>. | Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>. | ||
+ | |||
+ | == Video Solution == | ||
+ | https://youtu.be/3dfbWzOfJAI?t=2785 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
== Solution 1 == | == Solution 1 == |
Revision as of 02:38, 14 January 2021
Problem
Suppose that the roots of are , , and , and that the roots of are , , and . Find .
Video Solution
https://youtu.be/3dfbWzOfJAI?t=2785
~ pi_is_3.14
Solution 1
By Vieta's formulas on the polynomial , we have , , and . Then
This is just the definition for .
Alternatively, we can expand the expression to get
Solution 2
Each term in the expansion of has a total degree of 3. Another way to get terms with degree 3 is to multiply out . Expanding both of these expressions and comparing them shows that:
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.