Difference between revisions of "2021 AMC 10B Problems/Problem 11"
(→Solution) |
|||
Line 15: | Line 15: | ||
~Bryguy | ~Bryguy | ||
+ | |||
+ | {{AMC10 box|year=2021|ab=B|before=[[2021 AMC 10A]]|after=[[2022 AMC 10A]]}} |
Revision as of 23:34, 11 February 2021
Problem
Grandma has just finished baking a large rectangular pan of brownies. She is planning to make rectangular pieces of equal size and shape, with straight cuts parallel to the sides of the pan. Each cut must be made entirely across the pan. Grandma wants to make the same number of interior pieces as pieces along the perimeter of the pan. What is the greatest possible number of brownies she can produce?
Solution 1:
Let the side lengths of this rectangular pan be and ; it follows that . This gives after some manipulation, so . By inspection, maximizes the number of brownies ~ ike.chen
Solution 2:
Let the dimensions of the rectangular pan be and . The number of interior pieces is because you cannot include the border, and the number of pieces along the perimeter is (THIS PART IS FLAWED ~ anonymous user).
Setting these two expressions equal, we have
Applying SFFT (Simon's Favorite Factoring Trick), we get . Doing a bit of trial-and-error, we see that is maximum when and , which gives us a maximum of brownies. .
~Bryguy
2021 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by 2021 AMC 10A |
Followed by 2022 AMC 10A | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |