Difference between revisions of "2004 AMC 12B Problems/Problem 13"

(Solution)
(Solution)
Line 7: Line 7:
 
\qquad\mathrm{(D)}\ 1
 
\qquad\mathrm{(D)}\ 1
 
\qquad\mathrm{(E)}\ 2</math>
 
\qquad\mathrm{(E)}\ 2</math>
== Solution ==
+
== Solution (Alcumus)==
 
Since <math>f(f^{-1}(x))=x</math>, it follows that <math>a(bx+a)+b=x</math>, which implies <math>abx + a^2 +b = x</math>. This equation holds for all values of <math>x</math> only if <math>ab=1</math> and <math>a^2+b=0</math>.
 
Since <math>f(f^{-1}(x))=x</math>, it follows that <math>a(bx+a)+b=x</math>, which implies <math>abx + a^2 +b = x</math>. This equation holds for all values of <math>x</math> only if <math>ab=1</math> and <math>a^2+b=0</math>.
  

Revision as of 12:56, 2 March 2021

Problem

If $f(x) = ax+b$ and $f^{-1}(x) = bx+a$ with $a$ and $b$ real, what is the value of $a+b$?

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -1 \qquad\mathrm{(C)}\ 0 \qquad\mathrm{(D)}\ 1 \qquad\mathrm{(E)}\ 2$

Solution (Alcumus)

Since $f(f^{-1}(x))=x$, it follows that $a(bx+a)+b=x$, which implies $abx + a^2 +b = x$. This equation holds for all values of $x$ only if $ab=1$ and $a^2+b=0$.

Then $b = -a^2$. Substituting into the equation $ab = 1$, we get $-a^3 = 1$. Then $a = -1$, so $b = -1$, and\[f(x)=-x-1.\]Likewise\[f^{-1}(x)=-x-1.\]These are inverses to one another since\[f(f^{-1}(x))=-(-x-1)-1=x+1-1=x.\]\[f^{-1}(f(x))=-(-x-1)-1=x+1-1=x.\]Therefore $a+b=\boxed{-2}$.

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png