Difference between revisions of "2001 AMC 10 Problems/Problem 20"

(Solution)
m (Solution)
Line 6: Line 6:
 
\qquad \textbf{(D)} {1000} \qquad \textbf{(E)} {1000\sqrt{2}} </math>
 
\qquad \textbf{(D)} {1000} \qquad \textbf{(E)} {1000\sqrt{2}} </math>
  
== Solution ==
+
== Solution 1 (video solution) ==
 +
 
 +
https://youtu.be/B1OXVB5GDjk
 +
 
 +
== Solution 2==
  
 
Let <math>x</math> represent the length of each side of the octagon, which is also the length of the hypotenuse of each of the right triangles. Each leg of the right triangles has length <math>x\sqrt{2}/2</math>, so <cmath>2 \cdot \frac{x\sqrt{2}}{2} +x=2000, \text{ and } x = \frac{2000}{\sqrt{2}+1}=\boxed{2000(\sqrt{2}-1)}.</cmath>
 
Let <math>x</math> represent the length of each side of the octagon, which is also the length of the hypotenuse of each of the right triangles. Each leg of the right triangles has length <math>x\sqrt{2}/2</math>, so <cmath>2 \cdot \frac{x\sqrt{2}}{2} +x=2000, \text{ and } x = \frac{2000}{\sqrt{2}+1}=\boxed{2000(\sqrt{2}-1)}.</cmath>

Revision as of 21:43, 29 June 2021

Problem

A regular octagon is formed by cutting an isosceles right triangle from each of the corners of a square with sides of length $2000$. What is the length of each side of the octagon?

$\textbf{(A)} \frac{1}{3}(2000) \qquad \textbf{(B)} {2000(\sqrt{2}-1)} \qquad \textbf{(C)} {2000(2-\sqrt{2})} \qquad \textbf{(D)} {1000} \qquad \textbf{(E)} {1000\sqrt{2}}$

Solution 1 (video solution)

https://youtu.be/B1OXVB5GDjk

Solution 2

Let $x$ represent the length of each side of the octagon, which is also the length of the hypotenuse of each of the right triangles. Each leg of the right triangles has length $x\sqrt{2}/2$, so \[2 \cdot \frac{x\sqrt{2}}{2} +x=2000, \text{ and } x = \frac{2000}{\sqrt{2}+1}=\boxed{2000(\sqrt{2}-1)}.\]

See Also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png