Difference between revisions of "2007 AMC 12A Problems/Problem 6"

(See also)
(diagram, wik)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Triangles ABC and ADC are isosceles with AB=BC and AD=DC. Point D is inside triangle ABC, angle ABC measures 40 degrees, and angle ADC measures 140 degrees. What is the degree measure of angle BAD?
+
Triangles <math>ABC</math> and <math>ADC</math> are [[isosceles]] with <math>AB=BC</math> and <math>\displaystyle AD=DC</math>. Point <math>D</math> is inside triangle <math>ABC</math>, angle <math>ABC</math> measures 40 degrees, and angle <math>ADC</math> measures 140 degrees. What is the degree measure of angle <math>BAD</math>?
 +
 
 +
<math>\mathrm{(A)}\ 20\qquad \mathrm{(B)}\ 30\qquad \mathrm{(C)}\ 40\qquad \mathrm{(D)}\ 50\qquad \mathrm{(E)}\ 60</math>
  
 
==Solution==
 
==Solution==
I leave it to you to draw your own diagram.
+
[[Image:2007_AMC12A-6.png]]
* We angle chase, and find out that:
+
 
* DAC=20
+
We angle chase, and find out that:
* BAC=70
+
* <math>DAC=\frac{180-140}{2} = 20</math>
* BAD=50
+
* <math>BAC=\frac{180-40}{2} = 70</math>
 +
* <math>BAD=BAC-DAC=50\ \mathrm{(A)}</math>
  
 
==See also==
 
==See also==
* [[2007 AMC 12A Problems/Problem 5 | Previous problem]]
+
{{AMC12 box|year=2007|ab=A|num-b=5|num-a=7}}
* [[2007 AMC 12A Problems/Problem 7 | Next problem]]
+
 
* [[2007 AMC 12A Problems]]
+
[[Category:Introductory Geometry Problems]]

Revision as of 11:00, 9 September 2007

Problem

Triangles $ABC$ and $ADC$ are isosceles with $AB=BC$ and $\displaystyle AD=DC$. Point $D$ is inside triangle $ABC$, angle $ABC$ measures 40 degrees, and angle $ADC$ measures 140 degrees. What is the degree measure of angle $BAD$?

$\mathrm{(A)}\ 20\qquad \mathrm{(B)}\ 30\qquad \mathrm{(C)}\ 40\qquad \mathrm{(D)}\ 50\qquad \mathrm{(E)}\ 60$

Solution

2007 AMC12A-6.png

We angle chase, and find out that:

  • $DAC=\frac{180-140}{2} = 20$
  • $BAC=\frac{180-40}{2} = 70$
  • $BAD=BAC-DAC=50\ \mathrm{(A)}$

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions