Difference between revisions of "2007 AMC 8 Problems/Problem 17"

(Solution)
m (Reverted edits by Raina0708 (talk) to last revision by Savannahsolver)
(Tag: Rollback)
Line 9: Line 9:
  
 
==Solution==
 
==Solution==
Since 30% of the original 30 liters of paint was yellow, and 5 liters of yellow paint were added to make the new mixture, there are 9+5=14 liters of yellow tint in the new mixture. Since only 5 liters of paint were added to the original 30, there are a total of 35 liters of paint in the new mixture. This gives 40% of yellow tint in the new mixture, which is C:40
+
Since <math>30\%</math> of the original <math>30</math> liters of paint was yellow, and 5 liters of yellow paint were added to make the new mixture, there are <math>9+5=14</math> liters of yellow tint in the new mixture. Since only 5 liters of paint were added to the original 30, there are a total of 35 liters of paint in the new mixture. This gives <math>40\%</math> of yellow tint in the new mixture, which is <math>\boxed{\textbf{(C) 40}}</math>.
  
 
==Video Solution by WhyMath==
 
==Video Solution by WhyMath==

Revision as of 11:22, 16 August 2021

Problem

A mixture of $30$ liters of paint is $25\%$ red tint, $30\%$ yellow tint and $45\%$ water. Five liters of yellow tint are added to the original mixture. What is the percent of yellow tint in the new mixture?

$\mathrm{(A)}\ 25 \qquad \mathrm{(B)}\ 35 \qquad \mathrm{(C)}\ 40 \qquad \mathrm{(D)}\ 45 \qquad \mathrm{(E)}\ 50$

Solution

Since $30\%$ of the original $30$ liters of paint was yellow, and 5 liters of yellow paint were added to make the new mixture, there are $9+5=14$ liters of yellow tint in the new mixture. Since only 5 liters of paint were added to the original 30, there are a total of 35 liters of paint in the new mixture. This gives $40\%$ of yellow tint in the new mixture, which is $\boxed{\textbf{(C) 40}}$.

Video Solution by WhyMath

https://youtu.be/5MfwBvLHUCw

~savannahsolver

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png