Difference between revisions of "2007 AMC 12A Problems/Problem 14"

 
m (minor: fix typos)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Let a, b, c, d, and e be distinct integers such that
+
Let a, b, c, d, and e be distinct [[integer]]s such that
  
* <math>(6-a)(6-b)(6-c)(6-d)(6-e)=45</math>
+
<div style="text-align:center;"><math>(6-a)(6-b)(6-c)(6-d)(6-e)=45</math></div>
  
What is a+b+c+d+e?
+
What is <math>a+b+c+d+e</math>?
  
* (A) 5
+
<math>\mathrm{(A)}\ 5\qquad \mathrm{(B)}\ 17\qquad \mathrm{(C)}\ 25\qquad \mathrm{(D)}\ 27\qquad \mathrm{(E)}\ 30</math>
* (B) 17
 
* (C) 25
 
* (D) 27
 
* (E) 30
 
  
 
==Solution==
 
==Solution==
If 45 is expressed as a product of five distinct integer factors, the absolute value of the product of any four it as least <math> |(-3)(-1)(1)(3)|=9</math>, so no factor can have an absolute value greater than 5. Thus the factors of the given expression are five of the integers <math>+-3, +- 1, +- 5</math>. The product of all six of these is -225=(-5)(45), so the factors are -3, -1, 1, 3, and 5. The corresponding values of a, b, c, d, and e are 9, 7, , 3, and 1, and their sum is 25 (C).
+
If 45 is expressed as a product of five distinct integer factors, the absolute value of the product of any four it as least <math> |(-3)(-1)(1)(3)|=9</math>, so no factor can have an absolute value greater than 5. Thus the factors of the given expression are five of the integers <math>+-3, +- 1, +- 5</math>. The product of all six of these is <math>\displaystyle -225=(-5)(45)</math>, so the factors are -3, -1, 1, 3, and 5. The corresponding values of a, b, c, d, and e are 9, 7, 5, 3, and 1, and their sum is 25 (C).
 
 
 
 
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2007|ab=A|num-b=13|num-a=15}}
 
{{AMC12 box|year=2007|ab=A|num-b=13|num-a=15}}
  
[[Category:Introductory Geometry Problems]]
+
[[Category:Introductory Algebra Problems]]

Revision as of 15:07, 14 September 2007

Problem

Let a, b, c, d, and e be distinct integers such that

$(6-a)(6-b)(6-c)(6-d)(6-e)=45$

What is $a+b+c+d+e$?

$\mathrm{(A)}\ 5\qquad \mathrm{(B)}\ 17\qquad \mathrm{(C)}\ 25\qquad \mathrm{(D)}\ 27\qquad \mathrm{(E)}\ 30$

Solution

If 45 is expressed as a product of five distinct integer factors, the absolute value of the product of any four it as least $|(-3)(-1)(1)(3)|=9$, so no factor can have an absolute value greater than 5. Thus the factors of the given expression are five of the integers $+-3, +- 1, +- 5$. The product of all six of these is $\displaystyle -225=(-5)(45)$, so the factors are -3, -1, 1, 3, and 5. The corresponding values of a, b, c, d, and e are 9, 7, 5, 3, and 1, and their sum is 25 (C).

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions