Difference between revisions of "2021 Fall AMC 12A Problems/Problem 10"
(→Solution 2 (9's Identity)) |
(→Solution 2 (9's Identity)) |
||
Line 53: | Line 53: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2 | + | N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &\pmod{5} \\ |
&\equiv 2+28+6+20+2 &\pmod{5} \\ | &\equiv 2+28+6+20+2 &\pmod{5} \\ | ||
&\equiv 58 &\pmod{5} \\ | &\equiv 58 &\pmod{5} \\ |
Revision as of 06:27, 26 November 2021
- The following problem is from both the 2021 Fall AMC 10A #12 and 2021 Fall AMC 12A #10, so both problems redirect to this page.
Problem
The base-nine representation of the number is What is the remainder when is divided by
Solution 1
Recall that We expand by the definition of bases: ~Aidensharp ~kante314 ~MRENTHUSIASM
Solution 2 (9's Identity)
We need to first convert N into a regular base-10 integer:
Now, consider how the last digit of changes with changes of the power of :
Note that if is odd:
If is even:
Therefore, we have:
~Wilhelm Z
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.