Difference between revisions of "1996 AIME Problems/Problem 9"
(→Problem) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == |
Revision as of 15:03, 24 September 2007
Problem
A bored student walks down a hall that contains a row of closed lockers, numbered 1 to 1024. He opens the locker numbered 1, and then alternates between skipping and opening each locker thereafter. When he reaches the end of the hall, the student turns around and starts back. He opens the first closed locker he encounters, and then alternates between skipping and opening each closed locker thereafter. The student continues wandering back and forth in this manner until every locker is open. What is the number of the last locker he opens?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |