Difference between revisions of "1996 AIME Problems/Problem 3"
(→See also) |
(solution) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Find the smallest positive integer <math>n</math> for which the expansion of <math>(xy-3x+7y-21)^n</math>, after like terms have been collected, has at least 1996 terms. | + | Find the smallest positive [[integer]] <math>n</math> for which the expansion of <math>(xy-3x+7y-21)^n</math>, after like terms have been collected, has at least 1996 terms. |
== Solution == | == Solution == | ||
− | + | Using a factoring trick (colloquially known as [[SFFT]]), rewrite as <math>[(x-3)(y-7)]^n = (x-3)^n(y-7)^n</math>. Both [[binomial expansion]]s will contain <math>n+1</math> non-like terms; their product will contain <math>(n+1)^2</math> terms, as each term will have an unique power of <math>x</math> or <math>y</math> and so none of the terms will need to be collected. Hence <math>(n+1)^2 > 1996</math>, the smallest square after <math>1996</math> is <math>2025 = 45^2</math>, so our answer is <math>45 - 1 = 044</math>. | |
== See also == | == See also == | ||
− | + | {{AIME box|year=1996|num-b=2|num-a=4}} | |
− | + | [[Category:Intermediate Algebra Problems]] |
Revision as of 18:47, 24 September 2007
Problem
Find the smallest positive integer for which the expansion of , after like terms have been collected, has at least 1996 terms.
Solution
Using a factoring trick (colloquially known as SFFT), rewrite as . Both binomial expansions will contain non-like terms; their product will contain terms, as each term will have an unique power of or and so none of the terms will need to be collected. Hence , the smallest square after is , so our answer is .
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |