Difference between revisions of "2022 AIME I Problems/Problem 1"

Line 5: Line 5:
 
==Solution==
 
==Solution==
  
<b>IN PROGRESS. NO EDIT PLEASE</b>
+
Let
 +
<cmath>\begin{align*}
 +
P(x) &= 2x^2 + ax + b, \\
 +
Q(x) &= -2x^2 + cx + d,
 +
\end{align*}</cmath>
 +
for some constants <math>a,b,c</math> and <math>d.</math>
 +
 
 +
We are given that
 +
<cmath>\begin{alignat*}{8}
 +
P(16) &= 512 + 16a + b &&= 54, \hspace{20mm}&&(1) \\
 +
Q(16) &= -512 + 16c + d &&= 54, \hspace{20mm}&&(2) \\
 +
P(20) &= 800 + 20a + b &&= 53,  \hspace{20mm}&&(3) \\
 +
Q(20) &= -800 + 20c + d &&= 53, \hspace{20mm}&&(4)
 +
\end{alignat*}</cmath>
 +
and we wish to find <math>P(0)+Q(0)=b+d.</math>
 +
 
 +
Subtracting <math>4\cdot[(3)+(4)]</math> from <math>5\cdot[(1)+(2)],</math> we have <cmath>b+d=5\cdot(54+54)-4\cdot(53+53)=\boxed{116}.</cmath>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 15:36, 17 February 2022

Problem 1

Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$

Solution

Let \begin{align*} P(x) &= 2x^2 + ax + b, \\ Q(x) &= -2x^2 + cx + d, \end{align*} for some constants $a,b,c$ and $d.$

We are given that \begin{alignat*}{8} P(16) &= 512 + 16a + b &&= 54, \hspace{20mm}&&(1) \\ Q(16) &= -512 + 16c + d &&= 54, \hspace{20mm}&&(2) \\ P(20) &= 800 + 20a + b &&= 53,  \hspace{20mm}&&(3) \\ Q(20) &= -800 + 20c + d &&= 53, \hspace{20mm}&&(4) \end{alignat*} and we wish to find $P(0)+Q(0)=b+d.$

Subtracting $4\cdot[(3)+(4)]$ from $5\cdot[(1)+(2)],$ we have \[b+d=5\cdot(54+54)-4\cdot(53+53)=\boxed{116}.\]

~MRENTHUSIASM

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png