Difference between revisions of "2022 AIME I Problems/Problem 7"

(Solution 2: Tried my very best making this solution more rigorous, but I realized that there are many more cases for the denominator: 5*7*9, 5*8*9, 6*7*9, 6*8*9, 6*7*8, 7*8*9. So, I decide to remove this sol and combine credits in Sol 1.)
m (Solution 1)
Line 3: Line 3:
 
Let <math>a,b,c,d,e,f,g,h,i</math> be distinct integers from <math>1</math> to <math>9.</math> The minimum possible positive value of <cmath>\dfrac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}</cmath> can be written as <math>\frac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
 
Let <math>a,b,c,d,e,f,g,h,i</math> be distinct integers from <math>1</math> to <math>9.</math> The minimum possible positive value of <cmath>\dfrac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}</cmath> can be written as <math>\frac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
  
==Solution 1==
+
==Solution==
 
To minimize a positive fraction, we minimize its numerator and maximize its denominator. It is clear that <math>\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i} \geq \frac{1}{7\cdot8\cdot9}.</math>
 
To minimize a positive fraction, we minimize its numerator and maximize its denominator. It is clear that <math>\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i} \geq \frac{1}{7\cdot8\cdot9}.</math>
  
Line 12: Line 12:
 
Together, we conclude that the minimum possible positive value of <math>\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}</math> is <math>\frac{1}{288}.</math> Therefore, the answer is <math>1+288=\boxed{289}.</math>
 
Together, we conclude that the minimum possible positive value of <math>\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}</math> is <math>\frac{1}{288}.</math> Therefore, the answer is <math>1+288=\boxed{289}.</math>
  
~MRENTHUSIASM
+
~MRENTHUSIASM ~Jgplay
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2022|n=I|num-b=6|num-a=8}}
 
{{AIME box|year=2022|n=I|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:37, 21 February 2022

Problem

Let $a,b,c,d,e,f,g,h,i$ be distinct integers from $1$ to $9.$ The minimum possible positive value of \[\dfrac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}\] can be written as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution

To minimize a positive fraction, we minimize its numerator and maximize its denominator. It is clear that $\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i} \geq \frac{1}{7\cdot8\cdot9}.$

If we minimize the numerator, then $a \cdot b \cdot c - d \cdot e \cdot f = 1.$ Note that $a \cdot b \cdot c \cdot d \cdot e \cdot f = (a \cdot b \cdot c) \cdot (a \cdot b \cdot c - 1) \geq 6! = 720,$ so $a \cdot b \cdot c \geq 28.$ It follows that $a \cdot b \cdot c$ and $d \cdot e \cdot f$ are consecutive composites with prime factors no other than $2,3,5,$ and $7.$ The smallest values for $a \cdot b \cdot c$ and $d \cdot e \cdot f$ are $36$ and $35,$ respectively. So, we have $\{a,b,c\} = \{2,3,6\}, \{d,e,f\} = \{1,5,7\},$ and $\{g,h,i\} = \{4,8,9\},$ from which $\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i} = \frac{1}{288}.$

If we do not minimize the numerator, then $a \cdot b \cdot c - d \cdot e \cdot f > 1.$ Note that $\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i} \geq \frac{2}{7\cdot8\cdot9} > \frac{1}{288}.$

Together, we conclude that the minimum possible positive value of $\frac{a \cdot b \cdot c - d \cdot e \cdot f}{g \cdot h \cdot i}$ is $\frac{1}{288}.$ Therefore, the answer is $1+288=\boxed{289}.$

~MRENTHUSIASM ~Jgplay

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png