Difference between revisions of "2018 AMC 8 Problems/Problem 21"
Ethancui0529 (talk | contribs) |
Ethancui0529 (talk | contribs) |
||
Line 13: | Line 13: | ||
==Solution 3== | ==Solution 3== | ||
By the [[Chinese Remainder Theorem]], we have that all solutions are in the form <math>x=198k+194</math> where <math>k\in \mathbb{Z}.</math> Counting the number of values, we get <math>\boxed{\textbf{(E) }5}.</math> | By the [[Chinese Remainder Theorem]], we have that all solutions are in the form <math>x=198k+194</math> where <math>k\in \mathbb{Z}.</math> Counting the number of values, we get <math>\boxed{\textbf{(E) }5}.</math> | ||
− | + | ~mathboy282 | |
==Solution 4== | ==Solution 4== | ||
− | We can use modular arithmetic. Set up the equations: <math>x | + | We can use modular arithmetic. Set up the equations: <math>x \equiv 2 \mod 6,</math> <math>x \equiv 5 \mod 9,</math> and <math>x \equiv 7 \mod 11.</math> These equations can also be written as <math>x+4 \equiv 0 \mod 6,</math> <math>x+4 \equiv 0 \mod 9,</math> and <math>x+4 \equiv 0 \mod 11.</math> Since <math>x+4</math> is congruent to numbers <math>6, 9,</math> and <math>11,</math> then it must also be congruent to their LCM. Thus, <math>x+4 \equiv 0 \mod 198,</math> since 198 is the LCM of <math>6, 9,</math> and <math>11.</math> Since these numbers have to be three digit, they can only be <math>194, 392, 590, 788,</math> and <math>986.</math> This gives us the answer of <math>\boxed{\textbf{(E) }5}.</math> |
+ | ~ethancui0529 | ||
− | |||
==Video Solutions== | ==Video Solutions== |
Revision as of 14:59, 17 December 2022
Contents
[hide]Problem
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?
Solution 1
Looking at the values, we notice that , and . This means we are looking for a value that is four less than a multiple of , , and . The least common multiple of these numbers is , so the numbers that fulfill this can be written as , where is a positive integer. This value is only a three digit integer when is or , which gives and respectively. Thus we have values, so our answer is
Solution 2
Let us create the equations: , and we know , it gives us , which is the range of the value of z. Because of , then , so must be a mutiple of 6. Because of , then , so must also be a mutiple of . Hence, the value of must be a common multiple of and , which means multiples of . So let's say , then , so . Thus the answer is ~LarryFlora
Solution 3
By the Chinese Remainder Theorem, we have that all solutions are in the form where Counting the number of values, we get ~mathboy282
Solution 4
We can use modular arithmetic. Set up the equations: and These equations can also be written as and Since is congruent to numbers and then it must also be congruent to their LCM. Thus, since 198 is the LCM of and Since these numbers have to be three digit, they can only be and This gives us the answer of ~ethancui0529
Video Solutions
https://youtu.be/CPQpkpnEuIc - Happytwin
https://youtu.be/7an5wU9Q5hk?t=939 - pi_is_3.14
~savannahsolver
https://www.youtube.com/watch?v=PjYwbGm_2aM
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.