Difference between revisions of "2022 AMC 8 Problems/Problem 14"

(Solution)
Line 15: Line 15:
  
 
~Interstigation
 
~Interstigation
 +
 +
==Video Solution==
 +
https://youtu.be/p29Fe2dLGs8?t=212
 +
 +
~STEMbreezy
  
 
==See Also==  
 
==See Also==  
 
{{AMC8 box|year=2022|num-b=13|num-a=15}}
 
{{AMC8 box|year=2022|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:20, 25 December 2022

Problem

In how many ways can the letters in $\textbf{BEEKEEPER}$ be rearranged so that two or more $\textbf{E}$s do not appear together?

$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120$

Solution

All valid arrangements of the letters must be of the form \[\textbf{E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E}.\] The problem is equivalent to counting the arrangements of $\textbf{B},\textbf{K},\textbf{P},$ and $\textbf{R}$ into the four blanks, in which there are $4!=\boxed{\textbf{(D) } 24}$ ways.

~MRENTHUSIASM

Video Solution

https://youtu.be/Ij9pAy6tQSg?t=1222

~Interstigation

Video Solution

https://youtu.be/p29Fe2dLGs8?t=212

~STEMbreezy

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png