Difference between revisions of "2018 AMC 8 Problems/Problem 19"
m (→Solution 3: deleted illogical explanation.) |
m (→Solution 4: Deleted circular-logic solution) |
||
Line 28: | Line 28: | ||
==Solution 2== | ==Solution 2== | ||
The sign of the next row on the pyramid depends on previous row. There are two options for the previous row, - or +. There are three rows to the pyramid that depend on what the top row is. Therefore, the ways you can make a + on the top is <math>2^3=8</math>, so the answer is <math>\boxed{\textbf{(C) } 8}</math>. | The sign of the next row on the pyramid depends on previous row. There are two options for the previous row, - or +. There are three rows to the pyramid that depend on what the top row is. Therefore, the ways you can make a + on the top is <math>2^3=8</math>, so the answer is <math>\boxed{\textbf{(C) } 8}</math>. | ||
− | |||
− | |||
− | |||
==Video Solution== | ==Video Solution== |
Revision as of 20:44, 1 January 2023
Problem
In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid?
Solution 1
You could just make out all of the patterns that make the top positive. In this case, you would have the following patterns:
+−−+, −++−, −−−−, ++++, −+−+, +−+−, ++−−, −−++. There are 8 patterns and so the answer is .
-NinjaBoi2000
Solution 2
The sign of the next row on the pyramid depends on previous row. There are two options for the previous row, - or +. There are three rows to the pyramid that depend on what the top row is. Therefore, the ways you can make a + on the top is , so the answer is .
Video Solution
~savannahsolver
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.