ONLINE AMC 8 PREP WITH AOPS
Difference between revisions of "2023 AMC 8 Problems"
(→Problem 22) |
(→Problem 25) |
||
Line 82: | Line 82: | ||
==Problem 25== | ==Problem 25== | ||
[[2023 AMC 8 Problems/Problem 25|Solution]] | [[2023 AMC 8 Problems/Problem 25|Solution]] | ||
+ | |||
+ | Fifteen integers <math>a_1, a_2, a_3, \dots, a_{15}</math> are arranged in order on a number line. The integers are equally spaced and have the property that | ||
+ | <cmath>1 \le a_1 \le 10, \thickspace 13 \le a_2 \le 20, \thickspace 241 \le a_{15}\le 250.</cmath> | ||
+ | What is the sum of digits of <math>a_{14}</math>? | ||
+ | <math>\textbf{(A)}~8\qquad\textbf{(B)}~9\qquad\textbf{(C)}~10\qquad\textbf{(D)}~11\qquad\textbf{(E)}~12</math> | ||
==See Also== | ==See Also== |
Revision as of 17:57, 24 January 2023
2023 AMC 8 (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
[hide]- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See Also
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
In a sequence of positive integers, each term after the second is the product of the previous two terms. The sixth term is . What is the first term?
Problem 23
Problem 24
Problem 25
Fifteen integers are arranged in order on a number line. The integers are equally spaced and have the property that What is the sum of digits of ?
See Also
2023 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by 2022 AMC 8 |
Followed by 2024 AMC 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |