Difference between revisions of "1963 AHSME Problems/Problem 22"

(Solution to Problem 22)
 
m (Was OBE not BOE.)
Line 3: Line 3:
 
Acute-angled <math>\triangle ABC</math> is inscribed in a circle with center at <math>O</math>; <math>\stackrel \frown {AB} = 120^\circ</math> and <math>\stackrel \frown {BC} = 72^\circ</math>.
 
Acute-angled <math>\triangle ABC</math> is inscribed in a circle with center at <math>O</math>; <math>\stackrel \frown {AB} = 120^\circ</math> and <math>\stackrel \frown {BC} = 72^\circ</math>.
  
A point <math>E</math> is taken in minor arc <math>AC</math> such that <math>OE</math> is perpendicular to <math>AC</math>. Then the ratio of the magnitudes of <math>\angle OBE</math> and <math>\angle BAC</math> is:
+
A point <math>E</math> is taken in minor arc <math>AC</math> such that <math>OE</math> is perpendicular to <math>AC</math>. Then the ratio of the magnitudes of <math>\angle BOE</math> and <math>\angle BAC</math> is:
  
 
<math>\textbf{(A)}\ \frac{5}{18}\qquad
 
<math>\textbf{(A)}\ \frac{5}{18}\qquad

Revision as of 19:59, 29 April 2023

Problem

Acute-angled $\triangle ABC$ is inscribed in a circle with center at $O$; $\stackrel \frown {AB} = 120^\circ$ and $\stackrel \frown {BC} = 72^\circ$.

A point $E$ is taken in minor arc $AC$ such that $OE$ is perpendicular to $AC$. Then the ratio of the magnitudes of $\angle BOE$ and $\angle BAC$ is:

$\textbf{(A)}\ \frac{5}{18}\qquad \textbf{(B)}\ \frac{2}{9}\qquad \textbf{(C)}\ \frac{1}{4}\qquad \textbf{(D)}\ \frac{1}{3}\qquad \textbf{(E)}\ \frac{4}{9}$

Solution

[asy] draw(circle((0,0),1)); dot((-1,0)); pair A=(-1,0),B=(0.5,0.866),C=(0.978,-0.208),O=(0,0),E=(-0.105,-0.995); label("A",(-1,0),W); dot((0.5,0.866)); label("B",(0.5,0.866),NE); dot((0.978,-0.208)); label("C",(0.978,-0.208),SE); dot((0,0)); label("O",(0,0),NE); dot(E); label("E",E,S); draw(A--B--C--A); draw(E--O);  [/asy]

Because $\stackrel \frown {AB} = 120^\circ$ and $\stackrel \frown {BC} = 72^\circ$, $\stackrel \frown {AC} = 168^\circ$. Also, $OA = OC$ and $OE \perp AC$, so $\angle AOE = \angle COE = 84^\circ$. Since $\angle BOC = 72^\circ$, $\angle BOE = 156^\circ$. Finally, $\triangle BOE$ is an isosceles triangle, so $\angle OBE = 12^\circ$. Because $\angle BAC = \frac{1}{2} \cdot 72 = 36^\circ$, the ratio of the magnitudes of $\angle OBE$ and $\angle BAC$ is $\frac{12}{36} = \frac{1}{3}$, which is answer choice $\boxed{\textbf{(D)}}$.

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png