Difference between revisions of "2003 AIME II Problems/Problem 3"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Define a <math>good~word</math> as a sequence of letters that consists only of the letters <math>A</math>, <math>B</math>, and <math>C</math> - some of these letters may not appear in the sequence - and in which <math>A</math> is never immediately followed by <math>B</math>, <math>B</math> is never immediately followed by <math>C</math>, and <math>C</math> is never immediately followed by <math>A</math>. How many seven-letter good words are there?
  
 
== Solution ==
 
== Solution ==
Line 5: Line 6:
  
 
== See also ==
 
== See also ==
* [[2003 AIME II Problems/Problem 2| Previous problem]]
+
{{AIME box|year=2003|n=II|num-b=2|num-a=4}}
 
 
* [[2003 AIME II Problems/Problem 4| Next problem]]
 
 
 
* [[2003 AIME II Problems]]
 

Revision as of 13:36, 21 November 2007

Problem

Define a $good~word$ as a sequence of letters that consists only of the letters $A$, $B$, and $C$ - some of these letters may not appear in the sequence - and in which $A$ is never immediately followed by $B$, $B$ is never immediately followed by $C$, and $C$ is never immediately followed by $A$. How many seven-letter good words are there?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions