Difference between revisions of "2003 AIME II Problems/Problem 4"
I_like_pie (talk | contribs) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | In a regular tetrahedron the centers of the four faces are the vertices of a smaller tetrahedron. The ratio of the volume of the smaller tetrahedron to that of the larger is <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
== Solution == | == Solution == | ||
Line 5: | Line 6: | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2003|n=II|num-b=3|num-a=5}} | |
− | |||
− | |||
− | |||
− |
Revision as of 13:37, 21 November 2007
Problem
In a regular tetrahedron the centers of the four faces are the vertices of a smaller tetrahedron. The ratio of the volume of the smaller tetrahedron to that of the larger is , where and are relatively prime positive integers. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |